Publications

Journal Covers

E. A. Carter, “Autobiography of Emily A. Carter,” J. Phys. Chem. A125, 1671 (2021)​.
(doi: 10.1021/acs.jpca.0c10044)

E. A. Carter, “Autobiography of Emily A. Carter,” J. Phys. Chem. C, 125, 4333 (2021)​.
(doi: 10.1021/acs.jpcc.0c10436)

H. Robatjazi, J. L. Bao, L. Zhou, M. Zhang, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Plasmon-driven carbon-fluorine (C(sp3)-F) bond activation with mechanistic insights into hot-carrier-mediated pathways,” Nat. Catal. 3, 564 (2020).
(doi: 10.1038/s41929-020-0466-5)

F. Libisch, C. Huang, and E. A. Carter, “Embedded Correlated Wavefunction Schemes: Theory and Applications,” Acc. Chem. Res.47, 2768 (2014).
(doi: 10.1021/ar500086h)

J. Xia, C. Huang, I. Shin, and E. A. Carter, “Can Orbital-Free Density Functional Theory Simulate Molecules?” J. Chem. Phys.136, 084102 (2012).

K. A. Marino, B. Hinnemann, and E. A. Carter, “Atomic-scale Insight and Design Principles for Turbine Engine Thermal Barrier Coatings from Theory,” Proc. Natl. Acad. Sci. U.S.A.108, 5480 (2011).

L. Hung and E. A. Carter, “Accurate Simulations of Metals at the Mesoscale: Explicit Treatment of 1 Million Atoms with Quantum Mechanics,” Chem. Phys. Lett.475, 163 (2009).
(doi: 10.1016/j.cplett.2009.04.059)

G. Ho, M. T. Ong, K. J. Caspersen, and E. A. Carter, “Energetics and Kinetics of Vacancy Diffusion and Aggregation in Shocked Aluminum via Orbital-Free Density Fuctional Theory,” PhysChemChemPhys9, 4951 (2007). 

B. Hinnemann and E. A. Carter, “Adsorption of Al, O, Hf, Y, Pt, and S atoms on α-Al2O3(0001),” J. Phys. Chem. C111, 7105 (2007).

P. Huang and E. A. Carter, “Local electronic structure around a single Kondo impurity,” Nano Letters6, 1146 (2006).

Research papers published by the Carter group are listed in reverse chronological order below. 

  1. J.-N. Boyn and E. A. Carter, “Elucidating and contrasting the mechanisms for Mg and Ca sulfate ion-pair formation with multi-level embedded quantum mechanics/molecular dynamics simulations,” Journal of Chemical Physics, 161, 224501 (2024). doi.org/10.1063/5.0235460
  2. E. A. Carter, S. Atsumi, M. Byron, J. Chen, S. Comello, M. Fan, B, Freeman, M. Fry, S. Jordaan, H. Mahgerefteh, A.-H. Park, J. Powell, A. R. Ramirez, V. Sick, S. Stewart, J. Trembly, J. Yang, J. Yuan, C. Wise, and E. Zeitler, “Carbon Utilization Infrastructure, Markets, and Research and Development: A Final Report,” National Academies of Sciences, Engineering, and Medicine (NASEM). Washington DC: The National Academies Press. ISBN: 978-0-309-71775-5 (2024). doi: 10.17226/27732
  3. E. A. Carter, “Our Role in Solving Global Challenges: An Opinion,” J. Am. Chem. Soc., 146, 21193-21195 (2024). doi: 10.1021/jacs.4c07374
  4. X. Wen, J.-N. Boyn, J. M. P. Martirez, Q. Zhao, and E. A. Carter, “​​Strategies to obtain reliable energy landscapes from embedded multireference correlated wavefunction methods for surface reactions,” Journal of Chemical Theory and Computation, 20, 6037-6048 (2024). doi: 10.1021/acs.jctc.4c00558
  5. B. Bobell, J.-N. Boyn, J. M. P. Martirez, and E. A. Carter, “Modeling Bicarbonate Formation in an Alkaline Solution with Multi-Level Quantum Mechanics/Molecular Dynamics Simulations,” Molecular Physics Special Issue in Honour of Giovanni Ciccotti, (2024). doi: 10.1080/00268976.2024.2375370
  6. X. Wen, J. M. P. Martirez, and E. A. Carter, “Plasmon-driven ammonia decomposition on Pd(111): Hole transfer’s role in changing rate-limiting steps,” ACS Catalysis, 14, 9539 (2024). doi: 10.1021/acscatal.4c01869
  7. Z. Wei, J. M. P. Martirez, and E. A. Carter, “First-Principles Insights into the Thermodynamics of Variable-Temperature Ammonia Synthesis on Transition-Metal-Doped Cu (100) and (111),” ACS Energy Lett., 9, 3012 (2024). doi: 10.1021/acsenergylett.4c01100
  8. A. G. Rajan, J. M. P. Martirez, and E. A. Carter, “Strongly Facet-Dependent Activity of Iron-Doped β-Nickel Oxyhydroxide for the Oxygen Evolution Reaction,” Phys. Chem. Chem. Phys. 25th Anniversary Special Issue, 26, 14721 (2024). doi: 10.1039/D4CP00315B
  9. J.-N. Boyn and E. A. Carter, “Characterizing the Mechanisms of Ca and Mg Carbonate Ion-Pair Formation with Multi-Level Molecular Dynamics/Quantum Mechanics Simulations,” J. Phys. Chem. B, 127, 10824 (2023). doi: 10.1021/acs.jpcb.3c05369
  10. A. Acosta, J. M. P. Martirez, N. Lim, J. P. Chang, and E. A. Carter, “Effect of thickness and surface composition on the stability of polarization in ferroelectric HfxZr1-xO2 thin films,” Phys. Rev. Mater., 7, 124401 (2023). doi: 10.1103/PhysRevMaterials.7.124401
  11. Z. Wei, J. M. P. Martirez, and E. A. Carter, “Introducing the Embedded Random Phase Approximation: H2 Dissociative Adsorption on Cu(111) as an Exemplar,” J. Chem. Phys., 159, 194108 (2023). doi: 10.1063/5.0181229
  12. M. B. Bertagni, R. H. Socolow, J. M. P. Martirez, E. A. Carter, C. Greig, Y. Ju, T. Lieuwen, M.E. Mueller, S. Sundaresan, R. Wang, M. A. Zondlo, and A. Porporato, “Minimizing the Impacts of the Ammonia Economy on the Nitrogen Cycle and Climate,” Proc. Natl. Acad. Sci. U.S. A., 120, e2311728120 (2023). doi: 10.1073/pnas.2311728120
  13. J.-N. Boyn and E. A. Carter, “Probing pH-Dependent Dehydration Dynamics of Mg and Ca Cations in Aqueous Solutions with Multi-Level Quantum Mechanics/Molecular Dynamics Simulations,” J. Am. Chem. Soc., 145, 20462 (2023). doi.org/10.1021/jacs.3c06182
  14. J. M. P. Martirez and E. A. Carter, “Solvent dynamics are critical to understanding carbon dioxide dissolution and hydration in water,” J. Am. Chem. Soc., 145, 12561 (2023). doi: 10.1021/jacs.3c01283
  15. E. A. Carter, M. A. Johnson, and S. R. Leone, “A Tribute to Michael R. Berman,” J. Phys. Chem. C, 127, 11421 (2023). doi: 10.1021/acs.jpcc.3c03070
  16. R. B. Wexler, G. S. Gautam, R. Bell, S. Shulda, N. A. Strange, J. A. Trindell, J. D. Sugar, E. Nygren, S. Sainio, A. H. McDaniel, D. Ginley, E. A. Carter, and E. B. Stechel, “Multiple and nonlocal cation redox in Ca–Ce–Ti–Mn oxide perovskites for solar thermochemical applications,” Energy Environ. Sci., 16, 2550 (2023). doi: 10.1039/d3ee00234a
  17. R. B. Wexler, E. B. Stechel, and E. A. Carter, “Materials Design Directions for Solar Thermochemical Water Splitting,” in Solar Fuels, Vol. 3, Nurdan Demirci Sankir & Mehmet Sankir, Eds. (Wiley-Scrivener, USA), 3-64 (2023). doi: 10.1002/9781119752097.ch1
  18. L. Li, M. F. Calegari Andrade, R. Car, A. Selloni, and E. A. Carter, “Characterizing Structure-Dependent TiS2/Water Interfaces using Deep-Neural-Network-Assisted Molecular Dynamics,” J. Phys. Chem. C, 127, 9750 (2023). doi: 10.1021/acs.jpcc.2c08581
  19. J. Cai, Q. Zhao, W.-Y. Hsu, C. Choi, J. M. P. Martirez, C. Chen, J. Huang, E. A. Carter, and Y. Huang, “Highly Selective Electrochemical Reduction of CO2 into Methane on Nanotwinned Cu,” J. Am. Chem. Soc., 145, 9136 (2023). doi: 10.1021/jacs.3c00847
  20. P. Chen, D. Fan, Y. Zhang, A. Selloni, E. A. Carter, C. B. Arnold, Y. Zhang, A. S. Gross, J. R. Chelikowsky, and N. Yao, “Observation of Electron Orbital Signatures of Single Atoms within Metal-Phthalocyanines using Atomic Force Microscopy,” Nat. Commun., 14, 1460 (2023). doi: 10.1038/s41467-023-37023-9
  21. E. A. Carter, S. Atsumi, M. Byron, A. Chuney, S. Comello, M. Fan, M. Fry, H. Mahgerefteh, E. Massetti, A.-H. Park, J. Powell, A. R. Ramírez, V. Sick, C. Wise, and E. Zeitler, “Carbon Dioxide Utilization Markets and Infrastructure: Status and Opportunities: A First Report,” National Academies of Sciences, Engineering, and Medicine (NASEM), Washington, DC: The National Academies Press, ISBN 978-0-309-69327-1 (2023). doi: 10.17226/26703
  22. Y. Yuan, L. Zhou, J. L. Bao, J. Zhou, A. Bayles, L. Yuan, M. Lou, M. Lou, S. Khatiwada, H. Robatjazi, E. A. Carter, P. Nordlander, and N. J. Halas, “Earth-abundant photocatalyst for H2 generation from NH3 with light-emitting diode illumination,” Science, 378, 889 (2022). doi: 10.1126/science.abn5636
  23. L. Yuan, J. Zhou, M. Zhang, X. Wen, J. M. P. Martirez, H. Robatjazi, L. Zhou, E. A. Carter, P. Nordlander, and N. J. Halas, “Plasmonic Photocatalysis with Chemically and Spatially Specific Antenna-Dual Reactor Complexes,” ACS Nano, 16, 17365 (2022). doi: 10.1021/acsnano.2c08191
  24. R. B. Wexler and E. A. Carter, “Oxygen-Chlorine Chemisorption Scaling for Seawater Electrolysis on Transition Metals: The Role of Redox,” Adv. Theory Simul., 2200592 (2022). doi: 10.1002/adts.202200592
  25. J. M. P. Martirez and E. A. Carter, “First-Principles Insights into the Thermocatalytic Cracking of Ammonia-Hydrogen Blends on Fe(110): 1. Thermodynamics,” J. Phys. Chem. C, 126, 19733 (2022). (Virtual Special Issue: Honoring Michael R. Berman) doi: 10.1021/acs.jpcc.2c06003
  26. Q. Zhao, J. M. P. Martirez, and E. A. Carter, “Charting C-C coupling pathways in electrochemical CO2 reduction on Cu(111) using embedded correlated wavefunction theory,” Proc. Natl. Acad. Sci. U.S.A., 119, e2202931119 (2022). doi: 10.1073/pnas.2202931119
  27. Q. Zhao, J. M. P. Martirez, and E. A. Carter, “Electrochemical Hydrogenation of CO on Cu(100): Insights from Accurate Multiconfigurational Wavefunction Methods,” J. Phys. Chem. Lett., 13, 10282 (2022). doi: 10.1021/acs.jpclett.2c02444
  28. A. M. Teale, T. Helgaker, A. Savin, C. Adamo, B. Aradi, A. V. Arbuznikov, P W. Ayers, E. J. Baerends, V. Barone, P. Calaminici, E. Cancès, E. A. Carter, P. K. Chattaraj, H. Chermette, I. Ciofini, T. D. Crawford, F. D. Proft, J. F. Dobson, C. Draxl, T. Frauenheim, E. Fromager, P. Fuentealba, L. Gagliardi, G. Galli, J. Gao, P. Geerlings, N. Gidopoulos, P. M. W. Gill, P. Gori-Giorgi, A. Görling, T. Gould, S. Grimme, O. Gritsenko, H. J. A. Jensen, E. R. Johnson, R. O. Jones, M. Kaupp, A. M. Köster, L. Kronik, A. I. Krylov, S. Kvall, A. Laestadius, M. Levy, M. Lewin, S. Liu, P. -F. Loos, N. T. Maitra, F. Neese, J. P. Perdew, K. Pernal, P. Pernot, P. Piecuch, E. Rebolini, L. Reining, P. Romaniello, A. Ruzsinszky, D. R. Salahub, M. Scheffler, P. Schwerdtfeger, V. N. Staroverov, J. Sun, E. Tellgren, D. J. Tozer, S. B. Trickey, C. A. Ullrich, A. Vela, G. Vignale, T. A. Wesolowski, X. Xu, and W. Yang, “DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science,” Phys. Chem. Chem. Phys., 24, 28700 (2022). (Hot Article) doi: 10.1039/d2cp02827a
  29. M. Lou, J. L. Bao, L. Zhou, G. N. Naidu, H. Robatjazi, A. I. Bayles, H. O. Everitt, P. Nordlander, E. A. Carter, and N. J. Halas, “Direct H2S Decomposition by Plasmonic Photocatalysis: Efficient Remediation plus Sustainable Hydrogen Production,” ACS Energy Lett., 7, 3666 (2022). doi: 10.1021/acsenergylett.2c01755
  30. H. Robatjazi, A. Schirato, A. Alabastri, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Reply to: Distinguishing thermal from non-thermal contributions to plasmonic hydrodefluorination,” Nat. Catal., 5, 247 (2022). doi: 10.1038/s41929-022-00768-5
  31. S. Zhai, J. Nam, G. S. Gautam, K. Lim, J. Rojas, M. F. Toney, E. A. Carter, I.-H. Jung, W. C. Chueh, and A. Majumdar, “Thermodynamic guiding principles of high-capacity phase transformation materials for splitting H2O and CO2 by thermochemical looping,” J. Mater. Chem. A, 10, 3552 (2022). doi: 10.1039/d1ta10391a
  32. A. Acosta, J. M. P. Martirez, N. Lim, J. P. Chang, and E. A. Carter, “Relationship between ferroelectric polarization and stoichiometry of HfO2 surfaces,” Phys. Rev. Mater., 5, 124417 (2021). doi: 10.1103/PhysRevMaterials.5.124417
  33. L. Li, J. M. P. Martirez, and E. A. Carter, “Identifying an Alternative Hydride Transfer Pathway for CO2 Reduction on CdTe(111) and CuInS2(112) Surfaces,” Adv. Theory Simul., 5, 2100413 (2021). doi: 10.1002/adts.202100413
  34. O. Y. Long, G. S. Gautam, and E. A. Carter, “Assessing cathode property prediction via exchange-correlation functionals with and without long-range dispersion corrections,” Phys. Chem. Chem. Phys., 23, 24726 (2021). doi: 10.1039/d1cp03163e
  35. P. Chen, D. Fan, Y. Zhang, A. Selloni, E. A. Carter, C. B. Arnold, D. C. Dankworth, S. P. Rucker, J. R. Chelikowsky, and N. Yao, “Breaking a dative bond with mechanical forces,” Nat. Commun., 12, 5635 (2021). (Editors’ Highlight) doi: 10.1038/s41467-021-25932-6
  36. A. G. Rajan, J. M. P. Martirez, and E. A. Carter, “Coupled Effects of Temperature, Pressure, and pH on Water Oxidation Thermodynamics and Kinetics,” ACS Catal., 11, 11305 (2021). doi: 10.1021/acscatal.1c02428
  37. R. B. Wexler, G. S. Gautam, E. B. Stechel, and E. A. Carter, “Factors Governing Oxygen Vacancy Formation in Oxide Perovskites,” J. Am. Chem. Soc., 143, 13212 (2021). (JACS Highly Cited Paper from 2020-21) doi: 10.1021/jacs.1c05570
  38. J. M. P. Martirez and E. A. Carter, “Metal-to-Ligand Charge-Transfer Spectrum of a Ru-Bipyridine-Sensitized TiO2 Cluster from Embedded Multiconfigurational Excited-State Theory,” J. Phys. Chem. A, 125, 4998 (2021). (Virtual Special Issue on “125 Years of The Journal of Physical Chemistry”) doi: 10.1021/acs.jpca.1c02628
  39. J. M. P. Martirez and E. A. Carter, “Projector-Free Capped-Fragment Scheme within Density Functional Embedding Theory for Covalent and Ionic Compounds,” J. Chem. Theory Comput., 17, 4105 (2021). doi: 10.1021/acs.jctc.1c00285
  40. L. Zhou, M. Lou, J. L. Bao, C. Zhang, J. G. Liu, J. M. P. Martirez, S. Tian, L. Yuan, D. F. Swearer, H. Robatjazi, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot carrier multiplication in plasmonic photocatalysis,” Proc. Natl. Acad. Sci. U.S.A., 118, e2022109118 (2021). doi: 10.1073/pnas.2022109118
  41. Q. Zhao, J. M. P. Martirez, and E. A. Carter, “Revisiting Understanding of Electrochemical CO2 Reduction on Cu(111): Competing Proton-Coupled Electron Transfer Reaction Mechanisms Revealed by Embedded Correlated Wavefunction Theory,” J. Am. Chem. Soc., 143, 6152 (2021). doi: 10.1021/jacs.1c00880
  42. J. M. P. Martirez, J. L. Bao, and E. A. Carter, “First-Principles Insights into Plasmon-Induced Catalysis,” Annu. Rev. Phys. Chem., 72, 99 (2021). doi: 10.1146/annurev-physchem-061020-053501
  43. R. B. Wexler, G. S. Gautam, and E. A. Carter, “Optimizing kesterite solar cells from Cu2ZnSnS4 to Cu2CdGe(S,Se)4,” J. Mater. Chem. A, 9, 9882 (2021). doi: 10.1039/d0ta11603c
  44. E. A. Carter, “Autobiography of Emily A. Carter,” J. Phys. Chem. A, 125, 1671 (2021). doi: 10.1021/acs.jpca.0c10044; J. Phys. Chem. C, 125, 4333 (2021). doi: 10.1021/acs.jpcc.0c10436
  45. A. J. Tkalych, H. Zhuang, and E. A. Carter, “An Integrated Methodology for Screening Hydrogen Evolution Reaction Catalysts: Pt/Mo2C as an Example,” in Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile (In Honor of William A. Goddard’s Contributions to Science and Engineering), Vol. 284, pp. 719-731, Richard Muller & Sadasivan Shankar, Eds. (Springer Series in Materials Science), ISBN 978-3-030-18777-4 (2021). doi: 10.1007/978-3-030-18778-1_31
  46. R. Sheil, J. M. P. Martirez, X. Sang, E. A. Carter, and J. P. Chang, “Precise Control of Nanoscale Cu Etching via Gas-Phase Oxidation and Chemical Complexation,” J. Phys. Chem. C, 125, 1819 (2021). doi: 10.1021/acs.jpcc.0c08932
  47. S. Xu and E. A. Carter, “CO2 Photoelectrochemical Reduction Catalyzed by a GaP(001) Photoelectrode,” ACS Catal., 11, 1233 (2021). doi: 10.1021/acscatal.0c04240
  48. A. Gupta, A. G. Rajan, E. A. Carter, and H. A. Stone, “Ionic Layering and Overcharging in Electrical Double Layers in a Poisson-Boltzmann Model,” Phys. Rev. Lett., 125, 188004 (2020). doi: 10.1103/PhysRevLett.125.188004
  49. L. Li, S. Xu, and E. A. Carter, “First-Principles Modeling of Sodium Ion and Water Intercalation into Titanium Disulfide Interlayers for Water Desalination,” Chem. Mater., 32, 10678 (2020). doi: 10.1021/acs.chemmater.0c03891
  50. A. Gupta, A. G. Rajan, E. A. Carter, and H. A. Stone, “Thermodynamics of Electrical Double Layers with Electrostatic Correlations,” J. Phys. Chem. C, 124, 26830 (2020). doi: 10.1021/acs.jpcc.0c08554
  51. G. S. Gautam, E. B. Stechel, and E. A. Carter, “Exploring Ca-Ce-M-O (M = 3d Transition Metal) Oxide Perovskites for Solar Thermochemical Applications,” Chem. Mater., 32, 9964 (2020). doi: 10.1021/acs.chemmater.0c02912
  52. A. G. Rajan and E. A. Carter, “Microkinetic model for pH- and potential-dependent oxygen evolution during water splitting on Fe-doped β-NiOOH,” Energy Environ. Sci., 13, 4962 (2020). (Hot Article) doi: 10.1039/d0ee02292f
  53. A. G. Rajan and E. A. Carter, “Discovering Competing Electrocatalytic Mechanisms and Their Overpotentials: Automated Enumeration of Oxygen Evolution Pathways,” J. Phys. Chem. C, 124, 24883 (2020). doi: 10.1021/acs.jpcc.0c08120
  54. Q. Zhao, X. Zhang, J. M. P. Martirez, and E. A. Carter, “Benchmarking an Embedded Adaptive Sampling Configuration Interaction Method for Surface Reactions: H2 Desorption from and CH4 Dissociation on Cu(111),” J. Chem. Theory Comput., 16, 7078 (2020). doi: 10.1021/acs.jctc.0c00341
  55. L. Li, J. M. P. Martirez, and E. A. Carter, “Prediction of Highly Selective Electrocatalytic Nitrogen Reduction at Low Overpotential on a Mo-doped g-GaN Monolayer,” ACS Catal., 10, 12841 (2020). doi: 10.1021/acscatal.0c03140
  56. A. G. Rajan, J. M. P. Martirez, and E. A. Carter, “Why Do We Use the Materials and Operating Conditions We Use for Heterogeneous (Photo)Electrochemical Water Splitting?,” ACS Catal., 10, 11177 (2020). doi: 10.1021/acscatal.0c01862
  57. Q. Zhao and E. A. Carter, “Revisiting Competing Paths in Electrochemical CO2 Reduction on Copper via Embedded Correlated Wavefunction Theory,” J. Chem. Theory Comput., 16, 6528 (2020). doi: 10.1021/acs.jctc.0c00583
  58. G. S. Gautam, E. B. Stechel, and E. A. Carter, “A First-Principles-Based Sub-Lattice Formalism for Predicting Off-Stoichiometry in Materials for Solar Thermochemical Applications: The Example of Ceria,” Adv. Theory Simul., 3, 2000112 (2020). doi: 10.1002/adts.202000112
  59. R. B. Wexler, G. S. Gautam, and E. A. Carter, “Exchange-correlation functional challenges in modeling quaternary chalcogenides,” Phys. Rev. B, 102, 054101 (2020). doi: 10.1103/PhysRevB.102.054101
  60. H. Robatjazi, J. L. Bao, L. Zhou, M. Zhang, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Plasmon-driven carbon-fluorine (C(sp3)-F) bond activation with mechanistic insights into hot-carrier-mediated pathways,” Nat. Catal., 3, 564 (2020). doi: 10.1038/s41929-020-0466-5
  61. O. Y. Long, G. S. Gautam, and E. A. Carter, “Evaluating optimal U for 3d transition-metal oxides within the SCAN+U framework,” Phys. Rev. Mat., 4, 045401 (2020). doi: 10.1103/PhysRevMaterials.4.045401
  62. H. Lischka, R. Shepard, T. Müller, P. G. Szalay, R. M. Pitzer, A. J. A. Aquino, M. M. Araújo do Nascimento, M. Barbatti, L. T. Belcher, J.-P. Blaudeau, I. Borges Jr., S. R. Brozell, E. A. Carter, A. Das, G. Gidofalvi, L. Gonzalez, W. L. Hase, G. Kedziora, M. Kertesz, F. Kossoski, F. B. C. Machado, S. Matsika, S. A. do Monte, D. Nachtigallova, R. Nieman, M. Oppel, C. A. Parish, F. Plasser, R. F. K. Spada, E. A. Stahlberg, E. Ventura, D. R. Yarkony, and Z. Zhang, “The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry,” J. Chem. Phys., 152, 134110 (2020). doi: 10.1063/1.5144267
  63. S. Xu and E. A. Carter, “Oxidation State of GaP Photoelectrode Surfaces under Electrochemical Conditions for Photocatalytic CO2 Reduction,” J. Phys. Chem. B, 124, 2255 (2020). doi: 10.1021/acs.jpcb.0c01236
  64. J. M. P. Martirez and E. A. Carter, “Secondary Transition-Metal Dopants for Enhanced Electrochemical O2 Formation and Desorption on Fe-Doped β-NiOOH,” ACS Energy Lett., 5, 962 (2020). doi: 10.1021/acsenergylett.9b02761
  65. J. M. P. Martirez and E. A. Carter, “Noninnocent Influence of Host β-NiOOH Redox Activity on Transition-Metal Dopants’ Efficacy as Active Sites in Electrocatalytic Water Oxidation,” ACS Catal., 10, 2720 (2020). doi: 10.1021/acscatal.9b05092
  66. A. G. Rajan, J. M. P. Martirez, and E. A. Carter, “Facet-Independent Oxygen Evolution Activity of Pure β-NiOOH: Different Chemistries Leading to Similar Overpotentials,” J. Am. Chem. Soc., 142, 3600 (2020). doi: 10.1021/jacs.9b13708
  67. L. Zhou, J. M. P. Martirez, J. Finzel, C. Zhang, D. F. Swearer, S. Tian, H. Robatjazi, M. Lou, L. Dong, L. Henderson, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts,” Nat. Energy, 5, 61 (2020). (WOS Highly Cited and Hot Paper in 2021-22) doi: 10.1038/s41560-019-0517-9
  68. B. G. del Rio, G. S. Gautam, and E. A. Carter, “Deuterium addition to liquid Li–Sn alloys: implications for plasma-facing applications,” Nucl. Fusion, 60, 016025 (2019). doi: 10.1088/1741-4326/ab523c
  69. S. Xu and E. A. Carter, “Optimal functionalization of a molecular electrocatalyst for hydride transfer,” Proc. Natl. Acad. Sci. U.S.A., 116, 22953 (2019). doi: 10.1073/pnas.1911948116
  70. S. Hadke, S. Levcenko, G. S. Gautam, C. J. Hages, J. A. Márquez, F. Oliva, V. Izquierdo-Roca, E. A. Carter, T. Unold, and L. H. Wong, “Suppressed Deep Traps and Bandgap Fluctuations in Cu2CdSnS4 Solar Cells with ≈8% Efficiency,” Adv. Energy Mater., 9, 1902509 (2019). doi: 10.1002/aenm.201902509
  71. C. Hepburn, E. Adlen, J. Beddington, E. A. Carter, S. Fuss, N. Mac Dowell, J. C. Minx, P. Smith, and C. Williams, “The technological and economic prospects for CO2 utilization and removal,” Nature, 575, 87 (2019). (WOS Highly Cited and Hot Paper in 2021-22) doi: 10.1038/s41586-019-1681-6
  72. J. L. Bao and E. A. Carter, “Surface-Plasmon-Induced Ammonia Decomposition on Copper: Excited-State Reaction Pathways Revealed by Embedded Correlated Wavefunction Theory,” ACS Nano, 13, 9944 (2019). doi: 10.1021/acsnano.9b05030
  73. W. C. Witt and E. A. Carter, “Kinetic energy density of nearly free electrons. II. Response functionals of the electron density,” Phys. Rev. B, 100, 125107 (2019). doi: 10.1103/PhysRevB.100.125107
  74. W. C. Witt and E. A. Carter, “Kinetic energy density of nearly free electrons. I. Response functionals of the external potential,” Phys. Rev. B, 100, 125106 (2019). doi: 10.1103/PhysRevB.100.125106
  75. J. L. Bao and E. A. Carter, “Rationalizing the Hot-Carrier-Mediated Reaction Mechanisms and Kinetics for Ammonia Decomposition on Ruthenium-Doped Copper Nanoparticles,” J. Am. Chem. Soc., 141, 13320 (2019). doi: 10.1021/jacs.9b06804
  76. W. C. Witt, K. Jiang, and E. A. Carter, “Upper bound to the gradient-based kinetic energy density of noninteracting electrons in an external potential,” J. Chem. Phys., 151, 064113 (2019). doi: 10.1063/1.5108896
  77. D. F. Swearer, H. Robatjazi, J. M. P. Martirez, M. Zhang, L. Zhou, E. A. Carter, P. Nordlander, and N. J. Halas, “Plasmonic Photocatalysis of Nitrous Oxide into N2 and O2 Using Aluminum–Iridium Antenna–Reactor Nanoparticles,” ACS Nano, 13, 8076 (2019). doi: 10.1021/acsnano.9b02924
  78. L. Li and E. A. Carter, “Defect-Mediated Charge-Carrier Trapping and Nonradiative Recombination in WSe2 Monolayers,” J. Am. Chem. Soc., 141, 10451 (2019). doi: 10.1021/jacs.9b04663
  79. S. Xu and E. A. Carter, “Balancing Competing Reactions in Hydride Transfer Catalysis via Catalyst Surface Doping: The Ionization Energy Descriptor,” J. Am. Chem. Soc., 141, 9895 (2019). doi: 10.1021/jacs.9b02897
  80. S. Xu and E. A. Carter, “Theoretical Insights into Heterogeneous (Photo)electrochemical CO2 Reduction,” Chem. Rev., 119, 6631 (2019). doi: 10.1021/acs.chemrev.8b00481; Virtual Issue on “Carbon Capture & Conversion,” J. Am. Chem. Soc., 142, 4955 (2020). (WOS Highly Cited Paper in 2021-22) doi: 10.1021/jacs.0c02356
  81. L. Zhou, D. F. Swearer, H. Robatjazi, A. Alabastri, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Response to Comment on “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis”,” Science, 364, eaaw9545 (2019). doi: 10.1126/science.aaw9545
  82. B. Foerster, V. A. Spata, E. A. Carter, C. Sönnichsen, and S. Link, “Plasmon damping depends on the chemical nature of the nanoparticle interface,” Sci. Adv., 5, eaav074 (2019). doi: 10.1126/sciadv.aav0704
  83. S. Berman, G. S. Gautam, and E. A. Carter, “Role of Na and Ca as Isovalent Dopants in Cu2ZnSnS4 Solar Cells,” ACS Sustain. Chem. Eng., 7, 5792 (2019). doi: 10.1021/acssuschemeng.8b05348;“Virtual Special Issue on Theories, Mechanisms, Materials, and Devices for Solar Energy Conversion,” ACS Sustain. Chem. Eng., 7, 10164 (2019). (Editorial) doi: 10.1021/acssuschemeng.9b02925
  84. X. Zhang and E. A. Carter, “Subspace Density Matrix Functional Embedding Theory: Theory, Implementation, and Applications to Molecular Systems,” J. Chem. Theor. Comp., 15, 949 (2019). doi: 10.1021/acs.jctc.8b00990
  85. B. G. del Rio, E. K. de Jong, and E. A. Carter, “Properties of fusion-relevant liquid Li-Sn alloys: An ab initio molecular-dynamics study,” Nucl. Mat. Energy, 18, 326 (2019). doi: 10.1016/j.nme.2019.01.027
  86. J. M. P. Martirez and E. A. Carter, “Unraveling Oxygen Evolution on Iron-Doped β-Nickel Oxyhydroxide: The Key Role of Highly Active Molecular-like Sites,” J. Am. Chem. Soc., 141, 693 (2019). (JACS Highly Cited Paper from 2018-19 and WOS Highly Cited Paper in 2021-22) doi: 10.1021/jacs.8b12386
  87. Z. Chen, J. M. P. Martirez, P. Zahl, E. A. Carter, and B. E. Koel, “Self-assembling of formic acid on the partially oxidized p(2 × 1) Cu(110) surface reconstruction at low coverages,” J. Chem. Phys., 150, 041720 (2019). doi: 10.1063/1.5046697
  88. S. Xu, L. Li, and E. A. Carter, “Why and How Carbon Dioxide Conversion to Methanol Happens on Functionalized Semiconductor Photoelectrodes,” J. Am. Chem. Soc., 140, 16749 (2018). doi: 10.1021/jacs.8b09946
  89. G. S. Gautam, T. P. Senftle, N. Alidoust, and E. A. Carter, “Novel Solar Cell Materials: Insights from First-Principles,” J. Phys. Chem. C, 122, 27107 (2018). doi: 10.1021/acs.jpcc.8b08185
  90. Q. Ou and E. A. Carter, “Potential Functional Embedding Theory with an Improved Kohn–Sham Inversion Algorithm,” J. Chem. Theor. Comp., 14, 5680 (2018). doi: 10.1021/acs.jctc.8b00717
  91. L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science, 362, 69 (2018). doi: 10.1126/science.aat6967
  92. G. S. Gautam and E. A. Carter, “Evaluating transition metal oxides within DFT-SCAN and SCAN+U frameworks for solar thermochemical applications,” Phys. Rev. Mater., 2, 095401 (2018). doi: 10.1103/PhysRevMaterials.2.095401
  93. B. G. del Rio, M. Chen, L. E. González, and E. A. Carter, “Orbital-free density functional theory simulation of collective dynamics coupling in liquid Sn,” J. Chem. Phys., 149, 094504 (2018). (Editor’s Pick) doi: 10.1063/1.5040697; Scilight: doi: 10.1063/1.5054900
  94. A. J. Tkalych, J. M. P. Martirez, and E. A. Carter, “Thermodynamic Evaluation of Trace-Amount Transition-Metal-Ion Doping in NiOOH Films,” J. Electrochem. Soc., 165, F907 (2018). doi: 10.1149/2.0101811jes
  95. J. M. P. Martirez and E. A. Carter, “Effects of the Aqueous Environment on the Stability and Chemistry of β-NiOOH Surfaces,” Chem. Mater., 30, 5205 (2018). doi: 10.1021/acs.chemmater.8b01866
  96. L. D. Chen, M. Bajdich, J. M. P. Martirez, C. M. Krauter, J. A. Gauthier, E. A. Carter, A. C. Luntz, K. Chan, and J. K. Nørskov, “Understanding the apparent fractional charge of protons in the aqueous electrochemical double layer,” Nat. Comm., 9, 3202 (2018). doi: 10.1038/s41467-018-05511-y
  97. A. J. Tkalych, J. M. P. Martirez, and E. A. Carter, “Effect of transition-metal-ion dopants on the oxygen evolution reaction on NiOOH(0001),” Phys. Chem. Chem. Phys., 20, 19525 (2018). doi: 10.1039/c8cp02849d
  98. G. S. Gautam, T. P. Senftle, and E. A. Carter, “Understanding the Effects of Cd and Ag Doping in Cu2ZnSnS4 Solar Cells,” Chem. Mater., 30, 4543 (2018). doi: 10.1021/acs.chemmater.8b00677
  99. S. Xu and E. A. Carter, “2-Pyridinide as an Active Catalytic Intermediate for CO2 Reduction on p-GaP Photoelectrodes: Lifetime and Selectivity,” J. Am. Chem. Soc., 140, 8732 (2018). doi: 10.1021/jacs.8b03774
  100. H. L. Zhuang, M. Chen, and E. A. Carter, “Orbital-free density functional theory characterization of the β’-Mg2Al3 Samson phase,” Phys. Rev. Mater., 2, 073603 (2018). doi: 10.1103/PhysRevMaterials.2.073603
  101. R. Yin, Y. Zhang, F. Libisch, E. A. Carter, H. Guo, and B. Jiang, “Dissociative Chemisorption of O2 on Al(111): Dynamics on a Correlated Wave-Function-Based Potential Energy Surface,” J. Phys. Chem. Lett., 9, 3271 (2018). doi: 10.1021/acs.jpclett.8b01470
  102. M. Lessio, T. P. Senftle, and E. A. Carter, “Hydride Shuttle Formation and Reaction with CO2 on GaP(110),” ChemSusChem, 11, 1558 (2018). doi: 10.1002/cssc.201800037
  103. V. A. Spata and E. A. Carter, “Mechanistic Insights into Photocatalyzed Hydrogen Desorption from Palladium Surfaces Assisted by Localized Surface Plasmon Resonances,” ACS Nano, 12, 3512 (2018). doi: 10.1021/acsnano.8b00352
  104. W. C. Witt, B. G. del Rio, J. M. Dieterich, and E. A. Carter, “Orbital-free density functional theory for materials research,” J. Mater. Res., 33, 777 (2018). doi: 10.1557/jmr.2017.462
  105. M. L. Clark, P. L. Cheung, M. Lessio, E. A. Carter, and C. P. Kubiak, “Kinetic and Mechanistic Effects of Bipyridine (bpy) Substituent, Labile Ligand, and Brønsted Acid on Electrocatalytic CO2 Reduction by Re(bpy) Complexes,” ACS Catal., 8, 2021 (2018). doi: 10.1021/acscatal.7b03971
  106. X. Zhang and E. A. Carter, “Kohn-Sham potentials from electron densities using a matrix representation within finite atomic orbital basis sets,” J. Chem. Phys., 148, 034105 (2018). doi: 10.1063/1.5005839
  107. J. M. P. Martirez and E. A. Carter, “Prediction of a low-temperature N2 dissociation catalyst exploiting near-IR–to–visible light nanoplasmonics,” Sci. Adv., 3, eaao4710 (2017). doi: 10.1126/sciadv.aao4710
  108. K. Yu and E. A. Carter, “Extending density functional embedding theory for covalently bonded systems,” Proc. Natl. Acad. Sci. U.S.A., 114, E10861 (2017). doi: 10.1073/pnas.1712611114
  109. K. Yu, C. M. Krauter, J. M. Dieterich, and E. A. Carter, “Density and Potential Functional Embedding: Theory and Practice,” in Fragmentation: Toward Accurate Calculations on Complex Molecular Systems, pp. 81-118, Mark Gordon, Ed. (John Wiley & Sons), ISBN: 978-1-119-12924-0 (2017). doi: 10.1002/9781119129271
  110. T. P. Senftle, M. Lessio, and E. A. Carter, “The Role of Surface-Bound Dihydropyridine Analogues in Pyridine-Catalyzed CO2 Reduction over Semiconductor Photoelectrodes,” ACS Cent. Sci., 3, 968 (2017). doi: 10.1021/acscentsci.7b00233
  111. T. P. Senftle and E. A. Carter, “Theoretical Determination of Band Edge Alignments at the Water–CuInS2(112) Semiconductor Interface,” Langmuir, 33, 9479 (2017). doi: 10.1021/acs.langmuir.7b00668
  112. M. Lessio, J. M. Dieterich, and E. A. Carter, “Hydride Transfer at the GaP(110)/Solution Interface: Mechanistic Implications for CO2 Reduction Catalyzed by Pyridine,” J. Phys. Chem. C, 121, 17321 (2017). doi: 10.1021/acs.jpcc.7b05052
  113. B. G. del Rio, J. M. Dieterich, and E. A. Carter, “Globally-Optimized Local Pseudopotentials for (Orbital-Free) Density Functional Theory Simulations of Liquids and Solids,” J. Chem. Theory Comput., 13, 3684 (2017). doi: 10.1021/acs.jctc.7b00565
  114. H. Zhuang, M. Chen, and E. A. Carter, “Prediction and characterization of an Mg-Al intermetallic compound with potentially improved ductility via orbital-free and Kohn-Sham density functional theory,” Modelling Simul. Mater. Sci. Eng., 25, 075002 (2017). doi: 10.1088/1361-651X/aa7e0c
  115. J. R. Vella, M. Chen, S. Fürstenberg, F. H. Stillinger, E. A. Carter, P. G. Debenedetti, and A. Z. Panagiotopoulos, “Characterization of the liquid Li-solid Mo (110) interface from classical molecular dynamics for plasma-facing applications,” Nucl. Fusion, 57, 116036 (2017). doi: 10.1088/1741-4326/aa7e0d
  116. A. J. Tkalych, H. Zhuang, and E. A. Carter, “A Density Functional + U Assessment of Oxygen Evolution Reaction Mechanisms on β-NiOOH,” ACS Catal., 7, 5329 (2017). doi: 10.1021/acscatal.7b00999; Correction: ACS Catal., 8, 6070 (2018). doi: 10.1021/acscatal.8b01775
  117. R. Zhang, L. Bursi, J. D. Cox, Y. Cui, C. M. Krauter, A. Alabastri, A. Manjavacas, A. Calzolari, S. Corni, E. Molinari, E. A. Carter, F. J. García de Abajo, H. Zhang, and P. Nordlander, “How to Identify Plasmons from the Optical Response of Nanostructures,” ACS Nano, 11, 7321 (2017). doi: 10.1021/acsnano.7b03421
  118. A. Das, T. Müller, F. Plasser, D. B. Krisiloff, E. A. Carter, and H. Lischka, “Local Electron Correlation Treatment in Extended Multireference Calculations: Effect of Acceptor–Donor Substituents on the Biradical Character of the Polycyclic Aromatic Hydrocarbon Heptazethrene,” J. Chem. Theor. Comp., 13, 2612 (2017). doi: 10.1021/acs.jctc.7b00156
  119. J. M. Dieterich, W. C. Witt, and E. A. Carter, “libKEDF: An Accelerated Library of Kinetic Energy Density Functionals,” J. Comput. Chem., 38, 1552 (2017). doi: 10.1002/jcc.24806
  120. J. M. Dieterich and E. A. Carter, “Opinion: Quantum solutions for a sustainable energy future,” Nat. Rev. Chem., 1, 0032 (2017). doi: 10.1038/s41570-017-0032
  121. J. M. P. Martirez and E. A. Carter, “Excited-State N2 Dissociation Pathway on Fe-Functionalized Au,” J. Am. Chem. Soc., 139, 4390 (2017). doi: 10.1021/jacs.6b12301
  122. T. P. Senftle and E. A. Carter, “The Holy Grail: Chemistry Enabling an Economically Viable CO2 Capture, Utilization, and Storage Strategy,” Acc. Chem. Res., 50, 472 (2017). doi: 10.1021/acs.accounts.6b00479; Virtual Issue on Carbon Capture and Conversion: J. Am. Chem. Soc., 142, 4955 (2020). doi: 10.1021/jacs.0c02356
  123. J. Cheng, K. Yu, F. Libisch, J. M. Dieterich, and E. A. Carter, “Potential Functional Embedding Theory at the Correlated Wave Function Level. 2. Error Sources and Performance Tests,” J. Chem. Theor. Comp., 13, 1081 (2017). doi: 10.1021/acs.jctc.6b01011
  124. J. Cheng, F. Libisch, K. Yu, M. Chen, J. M. Dieterich, and E. A. Carter, “Potential Functional Embedding Theory at the Correlated Wave Function Level. 1. Mixed Basis Set Embedding,” J. Chem. Theor. Comp., 13, 1067 (2017). doi: 10.1021/acs.jctc.6b01010
  125. D. Felsmann, H. Zhao, Q. Wang, I. Graf, T. Tan, X. Yang, E. A. Carter, Y. Ju, and K. Kohse-Höinghaus, “Contributions to improving small ester combustion chemistry: Theory, model and experiments,” Proceedings of the Combustion Institute, 36, 543 (2017). doi: 10.1016/j.proci.2016.05.012
  126. J. R. Vella, M. Chen, F. H. Stillinger, E. A. Carter, P. G. Debenedetti, and A. Z. Panagiotopoulos, “Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field,” Phys. Rev. B, 95, 064202 (2017). doi: 10.1103/PhysRevB.95.064202
  127. H. Zhuang, A. J. Tkalych, and E. A. Carter, “Surface Energy as a Descriptor of Catalytic Activity,” J. Phys. Chem. C, 120, 23698 (2016). doi: 10.1021/acs.jpcc.6b09687
  128. A. M. Ritzmann, J. M. Dieterich, and E. A. Carter, “Density functional theory investigation of the electronic structure and defect chemistry of Sr1-xKxFeO3,” MRS Communications, 6, 145 (2016). doi: 10.1557/mrc.2016.23
  129. M. Lessio, C. Riplinger, and E. A. Carter, “Stability of surface protons in pyridine-catalyzed CO2 reduction at p-GaP photoelectrodes,” Phys. Chem. Chem. Phys., 18, 26434 (2016). doi: 10.1039/c6cp04272d
  130. T. P. Senftle, M. Lessio, and E. A. Carter, “Interaction of Pyridine and Water with the Reconstructed Surfaces of GaP(111) and CdTe(111) Photoelectrodes: Implications for CO2 Reduction,” Chem. Mater., 28, 5799 (2016). doi: 10.1021/acs.chemmater.6b02084
  131. D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A., 113, 8916 (2016). (WOS Highly Cited Paper in 2021-22) doi: 10.1073/pnas.1609769113
  132. M. Lessio, T. P. Senftle, and E.A. Carter, “Is the Surface Playing a Role during Pyridine-Catalyzed CO2 Reduction on p-GaP Photoelectrodes?,” ACS Energy Lett., 1, 464 (2016). doi: 10.1021/acsenergylett.6b00233
  133. L. B. Roskop, E. F. Valeev, E. A. Carter, M. S. Gordon, and T. L. Windus, “Spin-Free [2]R12 Basis Set Incompleteness Correction to the Local Multireference Configuration Interaction and the Local Multireference Average Coupled Pair Functional Methods,” J. Chem. Theor. Comp., 12, 3176 (2016). doi: 10.1021/acs.jctc.6b00315
  134. H. Zhuang, M. Chen, and E. A. Carter, “Elastic and Thermodynamic Properties of Complex Mg-Al Intermetallic Compounds via Orbital-Free Density Functional Theory,” Phys. Rev. Appl., 5, 064021 (2016). doi: 10.1103/PhysRevApplied.5.064021
  135. M. Chen, J. Roszell, E. V. Scoullos, C. Riplinger, B. E. Koel, and E. A. Carter, “Effect of Temperature on the Desorption of Lithium from Molybdenum(110) Surfaces: Implications for Fusion Reactor First Wall Materials,” J. Phys. Chem. B, 120, 6110 (2016). doi: 10.1021/acs.jpcb.6b02092
  136. K. Yu and E. A. Carter, “Determining and Controlling the Stoichiometry of Cu2ZnSnS4 Photovoltaics: The Physics and Its Implications,” Chem. Mater., 28, 4415 (2016). doi: 10.1021/acs.chemmater.6b01612
  137. M. Chen, X.-W. Jiang, H. Zhuang, L.-W. Wang, and E. A. Carter, “Petascale Orbital-Free Density Functional Theory Enabled by Small-Box Algorithms,” J. Chem. Theor. Comp., 12, 2950 (2016). doi: 10.1021/acs.jctc.6b00326
  138. A. M. Ritzmann, J. M. Dieterich, and E. A. Carter, “Density functional theory + U analysis of the electronic structure and defect chemistry of LSCF (La0.5Sr0.5Co0.25Fe0.75O3-δ),” Phys. Chem. Chem. Phys., 18, 12260 (2016). doi: 10.1039/c6cp01720g
  139. H. Zhuang, A. J. Tkalych, and E. A. Carter, “Understanding and Tuning the Hydrogen Evolution Reaction on Pt-Covered Tungsten Carbide Cathodes,” J. Electrochem. Soc., 163, F629 (2016). doi: 10.1149/2.0481607jes
  140. J. Xia and E. A. Carter, “Orbital-free density functional theory study of amorphous L–-Si alloys and introduction of a simple density decomposition formalism,” Modell. Simul. Mater. Sci. Eng., 24, 035014 (2016). doi: 10.1088/0965-0393/24/3/035014
  141. T. Tan, X. Yang, Y. Ju, and E. A. Carter, “Ab Initio Reaction Kinetics of CH3OĊ(=O) and ĊH2OC(=O)H Radicals,” J. Phys. Chem. B, 120, 1590 (2016). doi: 10.1021/acs.jpcb.5b07959
  142. J. M. P. Martirez and E. A. Carter, “Thermodynamic Constraints in Using AuM (M = Fe, Co, Ni, and Mo) Alloys as N2 Dissociation Catalysts: Functionalizing a Plasmon-Active Metal,” ACS Nano, 10, 2940 (2016). doi: 10.1021/acsnano.6b00085
  143. L. Zhou, C. Zhang, M. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. Everitt, E. A. Carter, P. Nordlander, and N. Halas, “Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation,” Nano Lett., 16, 1478 (2016). doi: 10.1021/acs.nanolett.5b05149
  144. K. Yu and E. A. Carter, “Elucidating Structural Disorder and the Effects of Cu Vacancies on the Electronic Properties of Cu2ZnSnS4,” Chem. Mater., 28, 864 (2016). doi: 10.1021/acs.chemmater.5b04351
  145. T. Tan, X. Yang, Y. Ju, and E. A. Carter, “Ab initio kinetics studies of hydrogen atom abstraction from methyl propanoate,” Phys. Chem. Chem. Phys., 18, 4594 (2016). doi: 10.1039/c5cp07282d
  146. N. Alidoust, M. Lessio, and E. A. Carter, “Cobalt (II) oxide and nickel (II) oxide alloys as potential intermediate-band semiconductors: A theoretical study,” J. Appl. Phys., 119, 025102 (2016). doi: 10.1063/1.4939286
  147. T. Abrams, M. A. Jaworski, M. Chen, E. A. Carter, R. Kaita, D. P. Stotler, G. De Temmerman, T. W. Morgan, M. A. van den Berg, and H. J. van der Meiden, “Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation,” Nucl. Fusion, 56, 016022 (2016). doi: 10.1088/0029-5515/56/1/016022
  148. M. Chen, T. Abrams, M. A. Jaworski, and E. A. Carter, “Rock-salt structure lithium deuteride formation in liquid lithium with high-concentrations of deuterium: a first-principles molecular dynamics study,” Nucl. Fusion, 56, 016020 (2016). doi: 10.1088/0029-5515/56/1/016020
  149. C. X. Kronawitter, M. Lessio, P. Zahl, A. B. Muñoz-García, P. Sutter, E. A. Carter, and B. E. Koel, “Orbital-Resolved Imaging of the Adsorbed State of Pyridine on GaP(110) Identifies Sites Susceptible to Nucleophilic Attack,” J. Phys. Chem. C, 119, 28917 (2015). doi: 10.1021/acs.jpcc.5b08659
  150. T. Tan, X. Yang, Y. Ju, and E. A. Carter, “Ab initio pressure-dependent reaction kinetics of methyl propanoate radicals,” Phys. Chem. Chem. Phys., 17, 31061 (2015). doi: 10.1039/c5cp06004d
  151. N. Alidoust and E. A. Carter, “Three-dimensional hole transport in nickel oxide by alloying with MgO or ZnO,” J. Appl. Phys., 118, 185102 (2015). doi: 10.1063/1.4935478
  152. D. B. Krisiloff, C. M. Krauter, F. J. Ricci, and E. A. Carter, “Density Fitting and Cholesky Decomposition of the Two-Electron Integrals in Local Multireference Configuration Interaction Theory,” J. Chem. Theor. Comp., 11, 5242 (2015). doi: 10.1021/acs.jctc.5b00762
  153. A. J. Tkalych, K. Yu, and E. A. Carter, “Structural and Electronic Features of β-Ni(OH)2 and β-NiOOH from First Principles,” J. Phys. Chem. C, 119, 24315 (2015). doi: 10.1021/acs.jpcc.5b08481
  154. T. Tan, X. Yang, Y. Ju, and E. A. Carter, “Ab Initio Unimolecular Reaction Kinetics of CH2C(=O)OCH3 and CH3C(=O)OCH2 Radicals,” J. Phys. Chem. A, 119, 10553 (2015). doi: 10.1021/acs.jpca.5b08331
  155. M. Lessio and E. A. Carter, “What is the Role of Pyridinium in Pyridine-Catalyzed CO2 Reduction on p-GaP Photocathodes?,” J. Am. Chem. Soc., 137, 13248 (2015).
    doi: 10.1021/jacs.5b08639
  156. J. Xia and E. A. Carter, “Reply to Comment on ‘Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation,’ Phys. Rev. B, 91, 045124 (2015),” Phys. Rev. B, 92, 117102 (2015). doi: 10.1103/PhysRevB.92.117102
  157. C. X. Kronawitter, M. Lessio, P. Zhao, C. Riplinger, J. A. Boscoboinik, D. Starr, P. Sutter, E. A. Carter, and B. E. Koel, “Observation of Surface-Bound Negatively Charged Hydride and Hydroxide on GaP(110) in H2O Environments,” J. Phys. Chem. C, 119, 17762 (2015). doi: 10.1021/acs.jpcc.5b05361
  158. M. Chen, J. R. Vella, F. H. Stillinger, E. A. Carter, A. Z. Panagiotopoulos, and P. G. Debenedetti, “Liquid Li Structure and Dynamics: A Comparison Between OFDFT and Second Nearest-Neighbor Embedded-Atom Method,” AIChE Journal, 61, 2841 (2015). doi: 10.1002/aic.14795
  159. N. Alidoust and E. A. Carter, “First-principles assessment of hole transport in pure and Li-doped NiO,” Phys. Chem. Chem. Phys., 17, 18098 (2015). doi: 10.1039/c5cp03429a
  160. K. Yu, F. Libisch, and E. A. Carter, “Implementation of density functional embedding theory within the projector-augmented-wave method and applications to semiconductor defect states,” J. Chem. Phys., 143, 102806 (2015). doi: 10.1063/1.4922260
  161. T. Tan, X. Yang, C. M. Krauter, Y. Ju, and E. A. Carter, “Ab Initio Kinetics of Hydrogen Abstraction from Methyl Acetate by Hydrogen, Methyl, Oxygen, Hydroxyl, and Hydroperoxy Radicals,” J. Phys. Chem. A, 119, 6377 (2015). doi: 10.1021/acs.jpca.5b03506
  162. M. C. Toroker and E. A. Carter, “Strategies to suppress cation vacancies in metal oxide alloys: consequences for solar energy conversion,” J. Mat. Sci., 50, 5715 (2015). doi: 10.1007/s10853-015-9113-y
  163. D. B. Krisiloff, J. M. Dieterich, F. Libisch, and E. A. Carter, “Numerical Challenges in a Cholesky-Decomposed Local Correlation Quantum Chemistry Framework,” in Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts, pp. 59-91, R. Melnick, Ed. (John Wiley & Sons, Inc.), ISBN: 978-1118853986 (2015). doi: 10.1002/9781118853887.ch3
  164. C. Riplinger and E. A. Carter, “Cooperative Effects in Water Binding to Cuprous Oxide Surfaces,” J. Phys. Chem. C, 119, 9311 (2015). doi: 10.1021/acs.jpcc.5b00383
  165. K. Yu and E. A. Carter, “A Strategy to Stabilize Kesterite CZTS for High-Performance Solar Cells,” Chem. Mater., 27, 2920 (2015). doi: 10.1021/acs.chemmater.5b00172
  166. J. Cheng, F. Libisch, and E. A. Carter, “Dissociative Adsorption of O2 on Al(111): The Role of Orientational Degrees of Freedom,” J. Phys. Chem. Lett., 6, 1661 (2015). doi: 10.1021/acs.jpclett.5b00597
  167. V. B. Oyeyemi, J. M. Dieterich, D. B. Krisiloff, T. Tan, and E. A. Carter, “Bond Dissociation Energies of C10 and C18 Methyl Esters from Local Multireference Averaged-Coupled Pair Functional Theory,” J. Phys. Chem. A, 119, 3429 (2015). doi: 10.1021/jp512974k
  168. M. Chen, J. Xia, C. Huang, J. M. Dieterich, L. Hung, I. Shin, and E. A. Carter, “Introducing PROFESS 3.0: An advanced program for orbital-free density functional theory molecular dynamics simulations,” Comp. Phys. Comm., 190, 228 (2015). doi: 10.1016/j.cpc.2014.12.021
  169. C. Riplinger and E. A. Carter, “Influence of Weak Brønsted Acids on Electrocatalytic CO2 Reduction by Manganese and Rhenium Bipyridine Catalysts,” ACS Catal., 5, 900 (2015). doi: 10.1021/cs501687n
  170. J. A. Keith, A. B. Muñoz-García, M. Lessio, and E. A. Carter, “Cluster Models for Studying CO2 Reduction on Semiconductor Photoelectrodes,” Top. Catal., 58, 46 (2015). doi: 10.1007/s11244-014-0341-1
  171. J. Xia and E. A. Carter, “Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation,” Phys. Rev. B, 91, 045124, (2015). doi: 10.1103/PhysRevB.91.045124
  172. X. Yang, D. Felsmann, N. Kurimoto, J. Krüger, T. Wada, T. Tan, E. A. Carter, K. Kohse-Höinghaus, and Y. Ju, “Kinetic studies of methyl acetate pyrolysis and oxidation in a flow reactor and a low-pressure flat flame using molecular-beam mass spectrometry,” Proceedings of the Combustion Institute, 35, 491 (2015). doi: 10.1016/j.proci.2014.05.058
  173. J. M. Dieterich and E. A. Carter, “Assessment of a semi integral-direct local multi-reference configuration interaction implementation employing shared-memory parallelization,” Comp. Theor. Chem., 1051, 47 (2015). (Editor’s Choice) doi: 10.1016/j.comptc.2014.10.030
  174. C. Riplinger, M. D. Sampson, A. M. Ritzmann, C. P. Kubiak, and E. A. Carter, “Mechanistic Contrasts between Manganese and Rhenium Bipyridine Electrocatalysts for the Reduction of Carbon Dioxide,” J. Am. Chem. Soc., 136, 16285 (2014). doi: 10.1021/ja508192y
  175. A. B. Muñoz-García, A. M. Ritzmann, M. Pavone, J.A. Keith, and E. A. Carter, “Oxygen Transport in Perovskite-Type Solid Oxide Fuel Cell Materials: Insights from Quantum Mechanics,” Acc. Chem. Res., 47, 3340 (2014). doi: 10.1021/ar4003174
  176. J. M. Dieterich, D. B. Krisiloff, A. Gaenko, F. Libisch, T. L. Windus, M. S. Gordon, and E. A. Carter, “Shared-memory parallelization of a local correlation multi-reference CI program,” Comput. Phys. Commun., 185, 3175 (2014). doi: 10.1016/j.cpc.2014.08.016
  177. C. X. Kronawitter, C. Riplinger, X. He, P. Zahl, E. A. Carter, P. Sutter, and B. E. Koel, “Hydrogen-Bonded Cyclic Water Clusters Nucleated on an Oxide Surface,” J. Am. Chem. Soc., 136, 13283 (2014). doi: 10.1021/ja5056214
  178. F. Libisch, C. Huang, and E. A. Carter, “Embedded Correlated Wavefunction Schemes: Theory and Applications,” Acc. Chem. Res., 47, 2768 (2014). (Cover Article) doi: 10.1021/ar500086h
  179. C. X. Kronawitter, I. Zegkinoglou, S.-H. Shen, P. Liao, I. S. Cho, O. Zandi, K. Lashgari, G. Westin, J.-H. Guo, F. J. Himpsel, E. A. Carter, X. L. Zheng, T. W. Hamann, B. E. Koel, S. S. Mao, and L. Vayssieres, “Titanium incorporation into hematite photoelectrodes: theoretical considerations and experimental observations,” Energy Environ. Sci., 7, 3100 (2014). doi: 10.1039/c4ee01066c
  180. V. B. Oyeyemi, J. A. Keith, and E. A. Carter, “Accurate Bond Energies of Biodiesel Methyl Esters from Multireference Averaged Coupled-Pair Functional Calculations,” J. Phys. Chem. A, 118, 7392 (2014). doi: 10.1021/jp412727w
  181. S. Suthirakun, S. Cheetu Ammal, A. B. Muñoz-García, G. Xiao, F. Chen, H.-C. zur Loye, E. A. Carter, and A. Heyden, “Theoretical Investigation of H2 Oxidation on the Sr2Fe1.5Mo0.5O6 (001) Perovskite Surface under Anodic Solid Oxide Fuel Cell Conditions,” J. Am. Chem. Soc., 136 8374 (2014). doi: 10.1021/ja502629j
  182. N. Alidoust, M. C. Toroker, and E. A. Carter, “Revisiting Photoemission and Inverse Photoemission Spectra of Nickel Oxide from First Principles: Implications for Solar Energy Conversion,” J. Phys. Chem. B, 118, 7963 (2014). doi: 10.1021/jp500878s
  183. M. Pavone, A. B. Muñoz-García, A. M. Ritzmann, and E. A. Carter, “First-Principles Study of Lanthanum Strontium Manganite: Insights into Electronic Structure and Oxygen Vacancy Formation,” J. Phys. Chem. C, 118, 13346 (2014). doi: 10.1021/jp500352h
  184. I. Shin and E. A. Carter, “Simulations of dislocation mobility in magnesium from first principles,” Int. J. Plasticity, 60, 58 (2014). doi: 10.1016/j.ijplas.2014.04.002
  185. V. B. Oyeyemi, J. A. Keith, and E. A. Carter, “Trends in Bond Dissociation Energies of Alcohols and Aldehydes Computed with Multireference Averaged Coupled-Pair Functional Theory,” J. Phys. Chem. A, 118, 3039 (2014). doi: 10.1021/jp501636r
  186. A. M. Ritzmann, M. Pavone, A. B. Muñoz-García, J. A. Keith, and E. A. Carter, “Ab initio DFT+U analysis of oxygen transport in LaCoO3: the effect of Co3+ magnetic states,” J. Mater. Chem. A, 2, 8060 (2014). doi: 10.1039/c4ta00801d
  187. I. Shin and E. A. Carter, “Enhanced von Weizsäcker Wang-Govind-Carter kinetic energy density functional for semiconductors,” J. Chem. Phys., 140, 18A531 (2014). doi: 10.1063/1.4869867
  188. Y. Ke, F. Libisch, J. Xia, and E. A. Carter, “Angular momentum dependent orbital-free density functional theory: Formulation and implementation,” Phys. Rev. B, 89, 155112 (2014). doi: 10.1103/PhysRevB.89.155112
  189. C. Huang, F. Libisch, Q. Peng, and E. A. Carter, “Time-dependent potential-functional embedding theory,” J. Chem. Phys., 140, 124113 (2014). doi: 10.1063/1.4869538
  190. K. Yu and E. A. Carter, “Communication: Comparing ab initio methods of obtaining effective U parameters for closed-shell materials,” J. Chem. Phys., 140, 121105 (2014). doi: 10.1063/1.4869718
  191. D. K. Kanan, J. A. Keith, and E. A. Carter, “First-Principles Modeling of Electrochemical Water Oxidation on MnO:ZnO(001),” ChemElectroChem, 1, 407 (2014). doi: 10.1002/celc.201300089
  192. L. Isseroff Bendavid and E. A. Carter, “Status in Calculating Electronic Excited States in Transition Metal Oxides from First Principles,” in Topics in Current Chemistry, Vol. 347, pp. 47-98, C. Di Valentin, S. Botti, and M. Cococcioni, Eds. (Springer, Germany), ISBN: 978-3-642-55067-6 (2014). doi: 10.1007/128_2013_503
  193. V. B. Oyeyemi, D. B. Krisiloff, J. A. Keith, F. Libisch, M. Pavone, and E. A. Carter, “Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons,” J. Chem. Phys., 140, 044317 (2014). doi: 10.1063/1.4862159
  194. N. Alidoust, M. C. Toroker, J. A. Keith, and E. A. Carter, “Significant Reduction in NiO Band Gap Upon Formation of LixNi1−xO alloys: Applications to Solar Energy Conversion,” ChemSusChem, 7, 195 (2014). doi: 10.1002/cssc.201300595
  195. J. Xia and E. A. Carter, “Orbital-free density functional theory study of crystalline Li–Si alloys,” J. Power Sources, 254, 62 (2014). doi: 10.1016/j.jpowsour.2013.12.097
  196. D. B. Krisiloff, V. B. Oyeyemi, F. Libisch, and E. A. Carter, “Analysis of and remedies for unphysical ground states of the multireference averaged coupled-pair functional,” J. Chem. Phys., 140, 024102 (2014). doi: 10.1063/1.4861035
  197. I. Shin and E. A. Carter, “First-principles simulations of plasticity in body-centered-cubic magnesium–lithium alloys,” Acta Materialia, 64, 198 (2014). doi: 10.1016/j.actamat.2013.10.030
  198. L. Isseroff Bendavid and E. A. Carter, “CO2 Adsorption on Cu2O(111): A DFT+U and DFT-D Study,” J. Phys. Chem. C, 117, 26048 (2013). doi: 10.1021/jp407468t
  199. L. Isseroff Bendavid and E. A. Carter, “First-Principles Predictions of the Structure, Stability, and Photocatalytic Potential of Cu2O Surfaces,” J. Phys. Chem. B, 117, 15750 (2013). doi: 10.1021/jp406454c
  200. M. Chen, L. Hung, C. Huang, J. Xia, and E. A. Carter, “The melting point of lithium: an orbital-free first-principles molecular dynamics study,” Molecular Physics, 111, 3448 (2013). doi: 10.1080/00268976.2013.828379
  201. J. A. Keith and E. A. Carter, “Theoretical Insights into Electrochemical CO2 Reduction Mechanisms Catalyzed by Surface-Bound Nitrogen Heterocycles,” J. Phys. Chem. Lett., 4, 4058 (2013). doi: 10.1021/jz4021519; Correction: J. Phys. Chem. Lett., 6, 568 (2015). doi: 10.1021/acs.jpclett.5b00170
  202. F. Libisch, J. Cheng, and E. A. Carter, “Electron-Transfer-Induced Dissociation of H2 on Gold Nanoparticles: Excited-State Potential Energy Surfaces via Embedded Correlated Wavefunction Theory,” Z. Phys. Chem., 227, 1455 (2013). doi: 10.1524/zpch.2013.0406; Correction: F. Libisch, C. M. Krauter, and E. A. Carter, “Corrigendum to: Plasmon-Driven Dissociation of H2 on Gold Nanoclusters,” Z. Phys. Chem., 230, 131 (2016). doi: 10.1515/zpch-2015-5001
  203. J. A. Keith, K. A. Grice, C. P. Kubiak, and E. A. Carter, “Elucidation of the Selectivity of Proton-Dependent Electrocatalytic CO2 Reduction by fac-Re(bpy)(CO)3Cl,” J. Am. Chem. Soc., 135,15823 (2013). doi: 10.1021/ja406456g
  204. L. Isseroff Bendavid and E. A. Carter, “First principles study of bonding, adhesion, and electronic structure at the Cu2O(111)/ZnO(1010) interface,” Surf. Sci., 618, 62 (2013). doi: 10.1016/j.susc.2013.07.027
  205. A. M. Ritzmann, A. B. Muñoz-García, M. Pavone, J. A. Keith, and E. A. Carter, “Ab initio evaluation of oxygen diffusivity in LaFeO3: the role of lanthanum vacancies,” MRS Communications, 3, 161 (2013). doi: 10.1557/mrc.2013.28
  206. D. K. Kanan, J. A. Keith, and E. A. Carter, “Water adsorption on MnO:ZnO(001) – From single molecules to bilayer coverage,” Surf. Sci., 617, 218 (2013). doi: 10.1016/j.susc.2013.07.023
  207. I. Shin and E. A. Carter, “Possible origin of the discrepancy in Peierls stresses of fcc metals: First-principles simulations of dislocation mobility in aluminum,” Phys. Rev. B, 88, 064106 (2013). doi: 10.1103/PhysRevB.88.064106
  208. Y. Ke, F. Libisch, J. Xia, L.-W. Wang, and E. A. Carter, “Angular-Momentum-Dependent Orbital-Free Density Functional Theory,” Phys. Rev. Lett., 111, 066402 (2013). doi: 10.1103/PhysRevLett.111.066402
  209. A. M. Ritzmann, A. B. Muñoz-García, M. Pavone, J. A. Keith, and E. A. Carter, “Ab Initio DFT+U Analysis of Oxygen Vacancy Formation and Migration in La1-xSrxFeO3-δ (x = 0, 0.25, 0.50),” Chem. Mater., 25, 3011 (2013). doi: 10.1021/cm401052w
  210. D. K. Kanan and E. A. Carter, “Optical Excitations in MnO and MnO:ZnO via Embedded CASPT2 Theory and Their Implications for Solar Energy Conversion,” J. Phys. Chem. C, 117, 13816 (2013). doi: 10.1021/jp4024475
  211. D. K. Kanan and E. A. Carter, “Ab initio study of electron and hole transport in pure and doped MnO and MnO:ZnO alloy,” J. Mater. Chem. A, 1, 9246 (2013). doi: 10.1039/c3ta11265a
  212. E. E. Benson, M. D. Sampson, K. A. Grice, J. M. Smieja, J. D. Froehlich, D. Friebel, J. A. Keith, E. A. Carter, A. Nilsson, and C. P. Kubiak, “The Electronic States of Rhenium Bipyridyl Electrocatalysts for CO2 Reduction as Revealed by X-Ray Absorption Spectroscopy and Computational Quantum Chemistry,” Angew. Chem. Int. Ed., 52, 4841 (2013). doi: 10.1002/anie.201209911
  213. A. B. Muñoz-García, M. Pavone, A. M. Ritzmann, and E. A. Carter, “Oxide ion transport in Sr2Fe1.5Mo0.5O6–δ, a mixed ion-electron conductor: new insights from first principles modeling,” Phys. Chem. Chem. Phys., 15, 6250 (2013). doi: 10.1039/c3cp50995h
  214. J. A. Keith and E. A. Carter, “Electrochemical reactivities of pyridinium in solution: consequences for CO2 reduction mechanisms,” Chem. Sci., 4, 1490 (2013). doi: 10.1039/c3sc22296a
  215. P. Liao and E. A. Carter, “New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides,” Chem. Soc. Rev., 42, 2401 (2013). doi: 10.1039/c2cs35267b
  216. L. Y. Isseroff and E. A. Carter, “Electronic Structure of Pure and Doped Cuprous Oxide with Copper Vacancies: Suppression of Trap States,” Chem. Mater., 25, 253 (2013). doi: 10.1021/cm3040278
  217. M. C. Toroker and E. A. Carter, “Transition metal oxide alloys as potential solar energy conversion materials,” J. Mater. Chem. A, 1, 2474 (2013). (Hot Article) doi: 10.1039/c2ta00816e
  218. S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au,” Nano Letters, 13, 240 (2013). (WOS Highly Cited Paper in 2021-22) doi: 10.1021/nl303940z
  219. J. Xia and E. A. Carter, “Density-decomposed orbital-free density functional theory for covalently bonded molecules and materials,” Phys. Rev. B, 86, 235109 (2012).
    doi: 10.1103/PhysRevB.86.235109
  220. F. Libisch, C. Huang, P. Liao, M. Pavone, and E. A. Carter, “Origin of the Energy Barrier to Chemical Reactions of O2 on Al(111): Evidence for Charge Transfer, Not Spin Selection,” Phys. Rev. Lett., 109, 198303 (2012). doi: 10.1103/PhysRevLett.109.198303
  221. J. A. Keith and E. A. Carter, “Quantum Chemical Benchmarking, Validation, and Prediction of Acidity Constants for Substituted Pyridinium Ions and Pyridinyl Radicals,” J. Chem. Theor. Comp., 8, 3187 (2012). doi: 10.1021/ct300295g
  222. A. B. Muñoz-García and E. A. Carter, “Non-innocent Dissociation of H2O on GaP(110): Implications for Electrochemical Reduction of CO2,” J. Am. Chem. Soc., 134, 13600 (2012). (Highlighted Article) doi: 10.1021/ja3063106
  223. T. Tan, M. Pavone, D. B. Krisiloff, and E. A. Carter, “Ab Initio Reaction Kinetics of Hydrogen Abstraction from Methyl Formate by Hydrogen, Methyl, Oxygen, Hydroxyl, and Hydroperoxy Radicals,” J. Phys. Chem. A, 116, 8431 (2012). doi: 10.1021/jp304811z; Correction: J. Phys. Chem. A, 119, 2186 (2015). doi: 10.1021/acs.jpca.5b01185
  224. M. C. Toroker and E. A. Carter, “Hole Transport in Nonstoichiometric and Doped Wüstite,” J. Phys. Chem. C, 116, 17403 (2012). doi: 10.1021/jp3047664
  225. P. Liao, J. A. Keith, and E. A. Carter, “Water Oxidation on Pure and Doped Hematite (0001) Surfaces: Prediction of Co and Ni as Effective Dopants for Electrocatalysis,” J. Am. Chem. Soc., 134, 13296 (2012). (WOS Highly Cited Paper in 2021-22) doi: 10.1021/ja301567f
  226. P. Liao and E. A. Carter, “Hole transport in pure and doped hematite,” J. Appl. Phys., 112, 013701 (2012). doi: 10.1063/1.4730634
  227. L. Y. Isseroff and E. A. Carter, “Importance of reference Hamiltonians containing exact exchange for accurate one-shot GW calculations of Cu2O,” Phys. Rev. B, 85, 235142 (2012). doi: 10.1103/PhysRevB.85.235142
  228. J. A. Keith and E. A. Carter, “Theoretical Insights into Pyridinium-Based Photoelectrocatalytic Reduction of CO2,” J. Am. Chem. Soc., 134, 7580 (2012). doi: 10.1021/ja300128e; Erratum: J. Am. Chem. Soc., 135, 7386 (2013). doi: 10.1021/ja402838u
  229. D. K. Kanan and E. A. Carter, “Band Gap Engineering of MnO via ZnO Alloying: A Potential New Visible-Light Photocatalyst,” J. Phys. Chem. C, 116, 9876 (2012). doi: 10.1021/jp300590d
  230. D. B. Krisiloff and E. A. Carter, “Approximately size extensive local multireference singles and doubles configuration interaction,” Phys. Chem. Chem. Phys., 14, 7710 (2012). doi: 10.1039/c2cp23757a
  231. A. B. Muñoz-García, D. E. Bugaris, M. Pavone, J. P. Hodges, A. Huq, F. Chen, H.-C. zur Loye, and E. A. Carter, “Unveiling Structure−Property Relationships in Sr2Fe1.5Mo0.5O6−δ, an Electrode Material for Symmetric Solid Oxide Fuel Cells,” J. Am. Chem. Soc., 134, 6826 (2012). doi: 10.1021/ja300831k
  232. J. Xia, C. Huang, I. Shin, and E. A. Carter, “Can orbital-free density functional theory simulate molecules?” J. Chem. Phys., 136, 084102 (2012). (Cover Article) doi: 10.1063/1.3685604
  233. C. Huang and E. A. Carter, “Toward an orbital-free density functional theory of transition metals based on an electron density decomposition,” Phys. Rev. B, 85, 045126 (2012). doi: 10.1103/PhysRevB.85.045126
  234. L. Hung, C. Huang, and E. A. Carter, “Preconditioners and Electron Density Optimization in Orbital-Free Density Functional Theory,” Comm. Comp. Phys., 12, 135 (2012). doi: 10.4208/cicp.190111.090911a
  235. V. Oyeyemi, J. A. Keith, M. Pavone, and E. A. Carter, “Insufficient Hartree–Fock Exchange in Hybrid DFT Functionals Produces Bent Alkynyl Radical Structures,” J. Phys. Chem. Lett., 3, 289 (2012). doi: 10.1021/jz201564g
  236. D. K. Kanan, S. Sharifzadeh, and E. A. Carter, “Quantum mechanical modeling of electronic excitations in metal oxides: Magnesia as a prototype,” Chem. Phys. Lett., 519, 18 (2012). (Editor’s Choice) doi: 10.1016/j.cplett.2011.11.003
  237. I. Shin and E. A. Carter, “Orbital-free density functional theory simulations of dislocations in magnesium,” Modell. Simul. Mater. Sci. Eng., 20, 015006 (2012). (Cover Article) doi: 10.1088/0965-0393/20/1/015006
  238. V. B. Oyeyemi, M. Pavone, and E. A. Carter, “Accurate Bond Energies of Hydrocarbons from Complete Basis Set Extrapolated Multi-Reference Singles and Doubles Configuration Interaction,” ChemPhysChem, 12, 3354 (2011). doi: 10.1002/cphc.201100447
  239. M. Pavone, A. M. Ritzmann, and E. A. Carter, “Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials,” Energy Environ. Sci., 4, 4933 (2011). doi: 10.1039/c1ee02377b
  240. P. Liao and E. A. Carter, “Optical Excitations in Hematite (α-Fe2O3) via Embedded Cluster Models: A CASPT2 Study,” J. Phys. Chem. C, 115, 20795 (2011). doi: 10.1021/jp206991v
  241. C. Huang and E. A. Carter, “Direct minimization of the optimized effective problem based on efficient finite differences,” Phys. Rev. B, 84, 165122 (2011). doi: 10.1103/PhysRevB.84.165122
  242. C. Huang and E. A. Carter, “Potential-functional embedding theory for molecules and materials,” J. Chem. Phys., 135, 194104 (2011). (Editor’s Choice, Highlighted Article “Journal of Chemical Physics 80th Anniversary Collection”) doi: 10.1063/1.3659293
  243. A. B. Muñoz-García, M. Pavone, and E. A. Carter, “Effect of Antisite Defects on the Formation of Oxygen Vacancies in Sr2FeMoO6: Implications for Ion and Electron Transport,” Chem. Mater., 23, 4525 (2011). doi: 10.1021/cm201799c
  244. M. Caspary Toroker, D. K. Kanan, N. Alidoust, L. Y. Isseroff, P. Liao, and E. A. Carter, “First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes,” Phys. Chem. Chem. Phys., 13, 16644 (2011). (WOS Highly Cited Paper in 2021-22) doi: 10.1039/c1cp22128k
  245. P. Liao and E. A. Carter, “Testing variations of the GW approximation on strongly correlated transition metal oxides: hematite (α-Fe2O3) as a benchmark,” Phys. Chem. Chem. Phys., 13, 15189 (2011). doi: 10.1039/c1cp20829b
  246. L. Hung and E. A. Carter, “Ductile processes at aluminium crack tips: comparison of orbital-free density functional theory with classical potential predictions,” Modell. Simul. Mater. Sci. Eng., 19, 045002 (2011). doi: 10.1088/0965-0393/19/4/045002
  247. C. Huang, M. Pavone, and E. A. Carter, “Quantum mechanical embedding theory based on a unique embedding potential,” J. Chem. Phys., 134, 154110 (2011). doi: 10.1063/1.3577516
  248. K. A. Marino, B. Hinnemann, and E. A. Carter, “Atomic-scale insight and design principles for turbine engine thermal barrier coatings from theory,” Proc. Natl. Acad. Sci. U.S.A., 108, 5480 (2011). (Highlighted Article “From the Cover”) doi: 10.1073/pnas.1102426108
  249. P. Liao, M. Caspary Toroker, and E. A. Carter, “Electron Transport in Pure and Doped Hematite,” Nano Letters, 11, 1775 (2011). doi: 10.1021/nl200356n
  250. L. Hung and E. A. Carter, “Orbital-Free DFT Simulations of Elastic Response and Tensile Yielding of Ultrathin [111] Al Nanowires,” J. Phys. Chem. C, 115, 6269 (2011). doi: 10.1021/jp112196t
  251. I. Milas, B. Hinnemann, and E. A. Carter, “Diffusion of Al, O, Pt, Hf, and Y atoms on α-Al2O3(0001): implications for the role of alloying elements in thermal barrier coatings,” J. Mater. Chem., 21, 1447 (2011). doi: 10.1039/c0jm02212h
  252. T. S. Chwee and E. A. Carter, “Valence Excited States in Large Molecules via Local Multireference Singles and Doubles Configuration Interaction,” J. Chem. Theory Comput., 7, 103 (2011). doi: 10.1021/ct100486q
  253. T. S. Chwee and E. A. Carter, “Density fitting of two-electron integrals in local multireference single and double excitation configuration interaction calculations,” Molecular Physics, 108, 2519 (2010). doi: 10.1080/00268976.2010.508052
  254. L. Hung, C. Huang, I. Shin, G. Ho, V. L. Lignères, and E. A. Carter, “Introducing PROFESS 2.0: A parallelized, fully linear scaling program for orbital-free density functional theory calculations,” Comput. Phys. Commun., 181, 2208 (2010). doi: 10.1016/j.cpc.2010.09.001
  255. P. Liao and E. A. Carter, “Ab initio density functional theory + U predictions of the shear response of iron oxides,” Acta Materialia, 58, 5912 (2010). doi: 10.1016/j.actamat.2010.07.007
  256. Q. Peng, X. Zhang, C. Huang, E. A. Carter, and G. Lu, “Quantum mechanical study of solid solution effects on dislocation nucleation during nanoindentation,” Modell. Simul. Mater. Sci. Eng., 18, 075003 (2010). doi: 10.1088/0965-0393/18/7/075003
  257. P. Liao and E. A. Carter, “Ab initio DFT + U predictions of tensile properties of iron oxides,” J. Mater. Chem., 20, 6703 (2010). doi: 10.1039/C0JM01199A
  258. K. A. Marino and E. A. Carter, “Ni and Al diffusion in Ni-rich NiAl and the effect of Pt additions,” Intermetallics, 18, 1470 (2010). doi: 10.1016/j.intermet.2010.03.044
  259. D. F. Johnson and E. A. Carter, “First Principles Assessment of Carbon Absorption into FeAl and Fe3Si: Toward Prevention of Cementite Formation and Metal Dusting of Steels,” J. Phys. Chem. C, 114, 4436 (2010). doi: 10.1021/jp907883h
  260. K. A. Marino and E. A. Carter, “The effect of platinum on Al diffusion kinetics in β-NiAl: Implications for thermal barrier coating lifetime,” Acta Materialia, 58, 2726 (2010). doi: 10.1016/j.actamat.2010.01.008
  261. T. S. Chwee and E. A. Carter, “Cholesky decomposition within local multireference singles and doubles configuration interaction,” J. Chem. Phys., 132, 074104 (2010). doi: 10.1063/1.3315419
  262. D. F. Johnson and E. A. Carter, “Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion,” J. Mater. Res., 25, 315 (2010). doi: 10.1557/JMR.2010.0036
  263. C. Huang and E. A. Carter, “Nonlocal orbital-free kinetic energy density functional for semiconductors,” Phys. Rev. B, 81, 045206 (2010). (Editor’s Suggestion) doi: 10.1103/PhysRevB.81.045206
  264. D. F. Johnson and E. A. Carter, “First-principles assessment of hydrogen absorption into FeAl and Fe3Si: Towards prevention of steel embrittlement,” Acta Materialia, 58, 638 (2010). doi: 10.1016/j.actamat.2009.09.042
  265. I. Shin, A. Ramasubramaniam, C. Huang, L. Hung, and E. A. Carter, “Orbital-free density functional theory simulations of dislocations in aluminum,” Philos. Mag., 89, 3195 (2009). doi: 10.1080/14786430903246353
  266. S. Sharifzadeh, P. Huang, and E. A. Carter, “Origin of tunneling lineshape trends for Kondo states of Co adatoms on coinage metal surfaces,” J. Phys.: Condens. Matter, 21, 355501 (2009). doi: 10.1088/0953-8984/21/35/355501
  267. L. Hung and E. A. Carter, “Accurate simulations of metals at the mesoscale: Explicit treatment of 1 million atoms with quantum mechanics,” Chem. Phys. Lett., 475, 163 (2009). (Cover Article) doi: 10.1016/j.cplett.2009.04.059
  268. J. Chai, V. L. Lignères, G. Ho, E. A. Carter, and J. D. Weeks, “Orbital-free density functional theory: Linear scaling methods for kinetic potentials, and applications to solid Al and Si,“ Chem. Phys. Lett., 473, 263 (2009). doi: 10.1016/j.cplett.2009.03.064
  269. G. Ho and E. A. Carter, “Mechanical Response of Aluminum Nanowires via Orbital-Free Density Functional Theory,” J. Comput. Theor. Nanos., 6, 1236 (2009). (Cover Article) doi: 10.1166/jctn.2009.1172
  270. N. J. Mosey and E. A. Carter, “Shear strength of chromia across multiple length scales: An LDA+U study,” Acta Materialia, 57, 2933 (2009). doi: 10.1016/j.actamat.2009.03.001
  271. A. Ramasubramaniam, M. Itakura, and E. A. Carter, “Interatomic potentials for hydrogen in α–iron based on density functional theory,” Phys. Rev. B, 79, 174101 (2009). doi: 10.1103/PhysRevB.79.174101; Erratum: Phys. Rev. B, 81, 099902(E), (2010). doi: 10.1103/PhysRevB.81.099902
  272. D. F. Johnson and E. A. Carter, “Structure and adhesion of MoSi2/Ni interfaces: Evaluation of MoSi2 as an alternative bond coat alloy,” Surf. Sci., 603, 1276 (2009). doi: 10.1016/j.susc.2009.03.018
  273. D. F. Johnson and E. A. Carter, “Bonding and Adhesion at the SiC/Fe Interface,” J. Phys. Chem. A, 113, 4367 (2009). doi: 10.1021/jp8110259
  274. I. Milas and E. A. Carter, “Effect of dopants on alumina grain boundary sliding: implications for creep inhibition,” J. Mater. Sci., 44, 1741 (2009). doi: 10.1007/s10853-008-3191-z
  275. S. Sharifzadeh, P. Huang, and E. A. Carter, “All-electron embedded correlated wavefunction theory for condensed matter electronic structure,” Chem. Phys. Lett., 470, 347 (2009). doi: 10.1016/j.cplett.2009.01.072
  276. K. A. Marino and E. A. Carter, “The Effect of Platinum on Diffusion Kinetics in β-NiAl: Implications for Thermal Barrier Coating Lifetimes,” ChemPhysChem, 10, 226 (2009). doi: 10.1002/cphc.200800528; Corrigendum: ChemPhysChem, 10, 2367 (2009). doi: 10.1002/cphc.200990058
  277. N. J. Mosey and E. A. Carter, “Ab initio LDA+U prediction of the tensile properties of chromia across multiple length scales,” J. Mech. Phys. Solids, 57, 287 (2009). doi: 10.1016/j.jmps.2008.10.009
  278. C. Huang and E. A. Carter, “Transferable local pseudopotentials for magnesium, aluminum and silicon,” Phys. Chem. Chem. Phys., 10, 7109 (2008). doi: 10.1039/b810407g
  279. K. A. Marino and E. A. Carter, “First-principles characterization of Ni diffusion kinetics in β-NiAl,” Phys. Rev. B, 78, 184105 (2008). doi: 10.1103/PhysRevB.78.184105; Erratum: Phys. Rev. B, 80, 069901(E), (2009). doi: 10.1103/PhysRevB.80.069901
  280. G. Ho, V. L. Lignères, and E. A. Carter, “Introducing PROFESS: A new program for orbital-free density functional theory calculations,” Comput. Phys. Commun., 179, 839 (2008). doi: 10.1016/j.cpc.2008.07.002
  281. A. Ramasubramaniam, M. Itakura, M. Ortiz, and E. A. Carter, “Effect of atomic scale plasticity on hydrogen diffusion in iron: Quantum mechanically informed and on-the-fly kinetic Monte Carlo simulations,” J. Mater. Res., 23, 2757 (2008). doi: 10.1557/JMR.2008.0340
  282. G. Ho, C. Huang, and E. A. Carter, “Describing metal surfaces and nanostuctures with orbital-free density functional theory,” Curr. Opin. Solid State Mater. Sci., 11, 57 (2008). doi: 10.1016/j.cossms.2008.06.005
  283. Q. Peng, X. Zhang, L. Hung, E. A. Carter, and G. Lu, “Quantum simulation of materials at micron scales and beyond,” Phys. Rev. B, 78, 054118 (2008). doi: 10.1103/PhysRevB.78.054118
  284. E. A. Carter, “Challenges in Modeling Materials Properties Without Experimental Input,” Science, 321, 800 (2008). doi: 10.1126/science.1158009
  285. K. A. Marino and E. A. Carter, “The effect of platinum on defect formation energies in β-NiAl,” Acta Materialia, 56, 3502 (2008). doi: 10.1016/j.actamat.2008.03.029
  286. G. Ho, V. L. Lignères, and E. A. Carter, “Analytic form for a nonlocal kinetic energy functional with a density-dependent kernel for orbital-free density functional theory under periodic and Dirichlet boundary conditions,” Phys. Rev. B, 78, 045105 (2008). doi: 10.1103/PhysRevB.78.045105
  287. N. J. Mosey, P. Liao, and E. A. Carter, “Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT + U calculations,” J. Chem. Phys., 129, 014103 (2008). doi: 10.1063/1.2943142
  288. T. S. Chwee, A. B. Szilva, R. Lindh, and E. A. Carter, “Linear scaling multireference singles and doubles configuration interaction,” J. Chem. Phys., 128, 224106 (2008). doi: 10.1063/1.2937443
  289. I. Milas, B. Hinnemann, and E. A. Carter, “Structure of an ion segregation to an alumina grain boundary: Implications for growth and creep,” J. Mater. Res., 23, 1494 (2008). doi: 10.1557/JMR.2008.0188
  290. P. Huang and E. A. Carter, “Ab Initio Explanation of Tunneling Line Shapes for the Kondo Impurity State,” Nano Letters, 8, 1265 (2008). doi: 10.1021/nl0804203
  291. S. Sharifzadeh, P. Huang, and E. A. Carter, “Embedded Configuration Interaction Description of CO on Cu(111): Resolution of the Site Preference Conundrum,” J. Phys. Chem. C, 112, 4649 (2008). doi: 10.1021/jp710890a
  292. A. Andersen and E. A. Carter, “First-principles-derived kinetics of the reactions involved in low-temperature dimethyl ether oxidation,” Molecular Physics, 106, 367 (2008). doi: 10.1080/00268970701837008; Erratum: Molecular Physics, 106, 963 (2008). doi: 10.1080/00268970802204645
  293. P. Huang and E. A. Carter, “Advances in Correlated Electronic Structure Methods for Solids, Surfaces, and Nanostructures,” Ann. Rev. Phys. Chem.,59, 261(2008). doi: 10.1146/annurev.physchem.59.032607.093528
  294. D. F. Johnson and E. A. Carter, “Nonadiabaticity in the iron bcc to hcp phase transformation,” J. Chem. Phys., 128, 104703 (2008). doi: 10.1063/1.2883592
  295. A. Ramasubramaniam and E. A. Carter, “Coupled Quantum–Atomistic and Quantum–Continuum Mechanics Methods in Materials Research,” Materials Research Society Bulletin, 32, 913 (2007). doi: 10.1557/mrs2007.188
  296. N. J. Mosey and E. A. Carter, “Ab initio evaluation of Coulomb and exchange parameters for DFT + U calculations,” Phys. Rev. B, 76, 155123 (2007). doi: 10.1103/PhysRevB.76.155123
  297. G. Ho, M. T. Ong, K. J. Caspersen, and E. A. Carter, “Energetics and kinetics of vacancy diffusion and aggregation in shocked aluminium via orbital-free density functional theory,” PhysChemChemPhys, 9, 4951 (2007). (Cover Article) doi: 10.1039/b705455f
  298. B. Hinnemann and E. A. Carter, “Adsorption of Al, O, Hf, Y, Pt, and S Atoms on α-Al2O3(0001),“ J. Phys. Chem. C, 111, 7105 (2007). (Cover Article) doi: 10.1021/jp068869c
  299. K. M. Carling and E. A. Carter, “Effects of segregating elements on the adhesive strength and structure of the α-Al2O3/β-NiAl interface,” Acta Materialia, 55, 2791 (2007). doi: 10.1016/j.actamat.2006.12.020
  300. K. Niedfeldt, P. Nordlander, and E. A. Carter, “Prediction of structure-dependent charge transfer rates for a Li atom outside a Si(001) surface,” Surf. Sci. Letters, 601, L29 (2007). doi: 10.1016/j.susc.2006.12.085
  301. D. F. Johnson, D. E. Jiang, and E. A. Carter, “Structure, magnetism, and adhesion at Cr/Fe interfaces from density functional theory,” Surf. Sci., 601, 699 (2007). doi: 10.1016/j.susc.2006.10.034
  302. D. E. Jiang and E. A. Carter, “Prediction of a Highly Activated State of CO Adsorbed on an Al/Fe(100) Bimetallic Surface,” J. Phys. Chem. B, 110, 22213 (2006). doi: 10.1021/jp056123t
  303. K. Niedfeldt, E. A. Carter, and P. Nordlander, “Influence of surface band gaps on the lifetimes of charge transfer states,” Surf. Sci., 600, 291 (2006). doi: 10.1016/j.susc.2006.08.005
  304. P. Huang and E. A. Carter, “Self-consistent embedding theory for locally correlated configuration interaction wave functions in condensed matter,” J. Chem. Phys., 125, 084102 (2006). doi: 10.1063/1.2336428
  305. K. Niedfeldt, P. Nordlander, and E. A. Carter, “Mechanism of enhanced broadening of the ionization level of Li outside transition metal surfaces,” Phys. Rev. B, 74, 115109 (2006). doi: 10.1103/PhysRevB.74.115109
  306. P. Huang and E. A. Carter, “Local Electronic Structure around a Single Kondo Impurity,” Nano Letters, 6, 1146 (2006). (Cover Article) doi: 10.1021/nl0602847
  307. R. L. Hayes, G. S. Ho, M. Ortiz, and E. A. Carter, “Prediction of dislocation nucleation during nanoindentation of AlʒMg by the orbital-free density functional theory local quasicontinuum method,” Phil. Mag., 86, 2343 (2006). doi: 10.1080/14786430500525829
  308. K. M. Carling, W. Glover, H. Gunaydin, T. Mitchell, and E. A. Carter, “Comparison of S, Pt, and Hf adsorption on NiAl(110),” Surf. Sci., 600, 2079 (2006). doi: 10.1016/j.susc.2006.02.047
  309. E. A. A. Jarvis and E. A. Carter, “A Nanoscale Mechanism of Fatigue in Ionic Solids, “Nano Letters, 6, 505 (2006). doi: 10.1021/nl0525655
  310. A. Lew, K. Caspersen, E. A. Carter, and M. Ortiz, “Quantum mechanics based multiscale modeling of stress-induced phase transformations in iron,” J. Mech. Phys. Solids, 54, 1276 (2006). doi: 10.1016/j.jmps.2005.11.009
  311. A. Andersen and E. A. Carter, “Insight into Selected Reactions in Low–Temperature Dimethyl Ether Combustion from Born–Oppenheimer Molecular Dynamics,” J. Phys. Chem. A, 110, 1393 (2006). doi: 10.1021/jp054509y
  312. E. A. Carter and P. J. Rossky, “Editorial on Computational and Theoretical Chemistry,” Acc. Chem. Res., 39, 71 (2006). doi: 10.1021/ar050190o
  313. R. L. Hayes and E. A. Carter, “Atomic origin of hysteresis during cyclic loading of Si due to bond rearrangements at the crack surfaces,” J. Chem. Phys., 123, 244704 (2005). doi: 10.1063/1.2137692
  314. V. Cocula, C. J. Pickard, and E. A. Carter, “Ultrasoft spin-dependent pseudopotentials,” J. Chem. Phys., 123, 214101 (2005). doi: 10.1063/1.2121547
  315. D. E. Jiang and E. A. Carter, “Effects of Alloying on the Chemistry of CO and H₂S on Fe Surfaces,” J. Phys. Chem. B, 109, 20469-20478 (2005). doi: 10.1021/jp052656q
  316. D. E. Jiang and E. A. Carter, “First-principles study of the interfacial adhesion between SiO2 and MoSi2,” Phys. Rev. B, 72, 165410 (2005). doi: 10.1103/PhysRevB.72.165410
  317. D. E. Jiang and E. A. Carter, “Prediction of strong adhesion at the MoSi2/Fe interface,” Acta Materialia, 53, 4489 (2005). doi: 10.1016/j.actamat.2005.06.001
  318. B. Zhou and E. A. Carter, “First principles local pseudopotential for silver: Towards orbital-free density-functional theory for transition metals,” J. Chem. Phys., 122, 184108 (2005). doi: 10.1063/1.1897379
  319. R. L. Hayes, M. Fago, M. Ortiz, and E. A. Carter, “Prediction of Dislocation Nucleation During Nanoindentation by the Orbital-Free Density Functional Theory Local Quasi-continuum Method,” Multiscale Modeling and Simulation, 4, 359(2005). doi: 10.1137/040615869; Erratum: Multiscale Modeling and Simulation, 7, 1003 (2008). doi: 10.1137/080727531
  320. V. Lignères and E. A. Carter, “An Introduction to Orbital-Free Density Functional Theory,” in Handbook of Materials Modeling, S.Yip (Ed.), 137-148 (2005). doi: 10.1007/978-1-4020-3286-8_9
  321. D. E. Jiang and E. A. Carter, “First principles study of H2S adsorption and dissociation on Fe(110),” Surf. Sci., 583, 60 (2005). doi: 10.1016/j.susc.2005.03.023
  322. K. J. Caspersen and E. A. Carter, “Finding transition states for crystalline solid–solid phase transformations,” Proc. Natl. Acad. Sci., 102, 6738 (2005). doi: 10.1073/pnas.0408127102
  323. D. E. Jiang and E. A. Carter, “Carbon atom adsorption on and diffusion into Fe(110) and Fe(100) from first principles,” Phys. Rev. B, 71, 045402 (2005). doi: 10.1103/PhysRevB.71.045402
  324. B. Zhou, V. Lignères, and E. A. Carter, “Improving the orbital-free density functional theory description of covalent materials,” J. Chem. Phys. 122, 044103 (2005). doi: 10.1063/1.1834563
  325. D. E. Jiang and E. A. Carter, “Adsorption, Diffusion, and Dissociation of H2S on Fe(100) from First Principles,” J. Phys. Chem. B, 108, 19140 (2004). doi: 10.1021/jp046475k
  326. S. Serebrinsky, E. A. Carter, and M. Ortiz, “A quantum-mechanically informed continuum model of hydrogen embrittlement,” J. Mech. Phys. Sol., 52, 2403 (2004). doi: 10.1016/j.jmps.2004.02.010
  327. D. E. Jiang and E. A. Carter, “Adsorption and dissociation of CO on Fe(110) from first principles,” Surf. Sci., 570, 167-177 (2004). doi: 10.1016/j.susc.2004.07.035
  328. M. Fago, R. L. Hayes, E. A. Carter, and M. Ortiz, “Density-functional-theory-based local quasicontinuum method: Prediction of dislocation nucleation,” Phys. Rev. B, 70, 100102(R) (2004). doi: 10.1103/PhysRevB.70.100102
  329. K. J. Caspersen, A. Lew, M. Ortiz, and E. A. Carter, “Importance of Shear in the bcc-to-hcp Transformation in Iron,” Phys. Rev. Lett., 93, 115501 (2004). doi: 10.1103/PhysRevLett.93.115501
  330. D. E. Jiang and E. A. Carter, “First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals,” Acta Materialia, 52, 4801 (2004). doi: 10.1016/j.actamat.2004.06.037
  331. E. Aprà, E. A. Carter, and A. Fortunelli, “Separability between valence and conduction bands in transition metal clusters,” Int. J. Quant. Chem., 100, 277 (2004). doi: 10.1002/qua.20192
  332. K. Niedfeldt, E. A. Carter, and P. Nordlander, “First principles resonance widths for Li near an Al(001) surface: Predictions of scattered ion neutralization probabilities,” J. Chem. Phys., 121, 3751 (2004). doi: 10.1063/1.1777218
  333. D. E. Jiang and E. A. Carter, “Diffusion of interstitial hydrogen into and through bcc Fe from first principles,” Phys. Rev. B, 70, 064102 (2004). doi: 10.1103/PhysRevB.70.064102
  334. M. Bendikov, H. M. Duong, K. Starkey, K. N. Houk, E. A. Carter, and F. Wudl, “Oligoacenes: Theoretical Prediction of Open-Shell Singlet Diradical Ground States,” J. Am. Chem. Soc., 126, 7416 (2004). doi: 10.1021/ja048919w; Erratum: J. Am. Chem. Soc., 126, 10493 (2004). doi: 10.1021/ja045878v
  335. A. Arya and E. A. Carter, “Structure, bonding, and adhesion at the ZrC(100)/Fe(110) interface from first principles,” Surf. Sci., 560, 103 (2004). doi: 10.1016/j.susc.2004.04.022
  336. R. L. Hayes, M. Ortiz, and E. A. Carter, “Universal binding-energy relation for crystals that accounts for surface relaxation,” Phys. Rev. B, 69, 172104 (2004). doi: 10.1103/PhysRevB.69.172104
  337. R. Puthenkovilakam, E. A. Carter, and J. P. Chang, “First-principles exploration of alternative gate dielectrics: Electronic structure of ZrO2/Si and ZrSiO4/Si interfaces,” Phys. Rev. B, 69, 155329 (2004). doi: 10.1103/PhysRevB.69.155329
  338. E. A. Carter and D. Walter, “Reduced scaling electron correlation methods,” In von Ragué Schleyer P, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR, editors, Encyclopedia of Computational Chemistry (online edition). John Wiley & Sons, Ltd, Chichester, UK. Article online posting date: (15th April 2004). doi: 10.1002/0470845015.cu0024
  339. B. Zhou, Y. A. Wang, and E. A. Carter, “Transferable local pseudopotentials derived via inversion of the Kohn-Sham equations in a bulk environment,” Phys. Rev. B, 69 125109 (2004). doi: 10.1103/PhysRevB.69.125109
  340. V. Cocula and E. A. Carter, “Breakdown of the pseudopotential approximation for magnetic systems: Predicting magnetic quenching at the V(001) surface with spin-dependent pseudopotentials,” Phys. Rev. B, 69, 052404 (2004). doi: 10.1103/PhysRevB.69.052404
  341. A. Venkatnathan, A. B. Szilva, D. Walter, R. J. Gdanitz, and E. A. Carter, “Size extensive modification of local multireference configuration interaction,” J. Chem. Phys., 120, 1693 (2004). doi: 10.1063/1.1635796
  342. D. E. Jiang and E. A. Carter, “Adsorption and diffusion energetics of hydrogen atoms on Fe(110) from first principles,” Surf. Sci, 547, 85 (2003). doi: 10.1016/j.susc.2003.10.007
  343. A. Andersen and E. A. Carter, “Hybrid Density Functional Theory Predictions of Low-Temperature Dimethyl Ether Combustion Pathways. II. Chain-Branching Energetics and Possible Role of the Criegee Intermediate,” J. Phys. Chem. A, 107, 9463 (2003). doi: 10.1021/jp035423c
  344. V. Cocula, F. Starrost, S. C. Watson, and E. A. Carter, “Spin-dependent pseudopotentials in the solid-state environment: Applications to ferromagnetic and antiferromagnetic metals,” J. Chem. Phys., 119, 7659 (2003). doi: 10.1063/1.1609399
  345. D. E. Jiang and E. A. Carter, “Carbon dissolution and diffusion in ferrite and austenite from first principles,” Phys. Rev. B, 67, 214103 (2003). doi: 10.1103/PhysRevB.67.214103
  346. A. Andersen and E. A. Carter, “A Hybrid Density Functional Theory Study of the Low-Temperature Dimethyl Ether Combustion Pathways. I: Chain-Propagation,” Israel J. of Chem, 42, 245 (2003). doi: 10.1560/YQM7-5E5M-523Q-AQG2
  347. A. Arya and E. A. Carter, “Structure, bonding, and adhesion at the TiC(100)/Fe(110) interface from first principles,” J. Chem. Phys., 118, 8982 (2003). doi: 10.1063/1.1565323; Erratum: J. Chem. Phys. 120, 1142 (2004). doi: 10.1063/1.1631815
  348. D. Walter, A. Venkatnathan, and E. A. Carter, “Local correlation in the virtual space in multireference singles and doubles configuration interaction,” J. Chem. Phys., 118, 8127 (2003). doi: 10.1063/1.1565314
  349. K. M. Carling and E. A. Carter, “Orbital-free density functional theory calculations of the properties of Al, Mg and Al–Mg crystalline phases,” Mod. Sim. Mat. Sci. Eng., 11, 339 (2003). doi: 10.1088/0965-0393/11/3/307
  350. W. C. Chiou, Jr. and E. A. Carter, “Structure and stability of Fe3C-cementite surfaces from first principles,” Surf. Sci., 530, 87 (2003). doi: 10.1016/S0039-6028(03)00352-2
  351. E. A. A. Jarvis and E. A. Carter, “Exploiting Covalency to Enhance Metal–Oxide and Oxide–Oxide Adhesion at Heterogeneous Interfaces,” J. of the Am. Ceramic Society, 86, 373 (2003). doi: 10.1111/j.1151-2916.2003.tb03309.x
  352. A. Andersen and E. A. Carter, “First-Principles Dynamics along the Reaction Path of CH3CH2 + O2 → H2C=CH2 + HOO: Evidence for Vibronic State Mixing and Neutral Hydrogen Transfer,” J. Phys. Chem. A., 106, 9672 (2002). doi: 10.1021/jp0206267
  353. E. A. A. Jarvis and E. A. Carter, “An Atomic Perspective of a Doped Metal-Oxide Interface,” J. Phys. Chem. B, 106, 7995 (2002). doi: 10.1021/jp0257348
  354. E. A. Jarvis and E. A. Carter, “Importance of open-shell effects in adhesion at metal-ceramic interfaces,” Phys. Rev. B, 66, 100103 (2002). doi: 10.1103/PhysRevB.66.100103
  355. D. Walter, A. Szilva, K. Niedfeldt, and E. A. Carter, “Local weak-pairs pseudospectral multireference configuration interaction,” J. Chem. Phys., 117, 1982 (2002). doi: 10.1063/1.1487816
  356. T. Klüner, N. Govind, Y. A. Wang, and E. A. Carter, “Reply to the Comment on ‘Prediction of Electronic Excited States of Adsorbates on Metal Surfaces from First Principles’, Phys. Rev. Lett., 86, 5954 (2001) by Klüner et al.” Phys. Rev. Lett., 88, 209702 (2002). doi: 10.1103/PhysRevLett.88.209702
  357. F. Starrost and E. A. Carter, “Modeling the full monty: baring the nature of surfaces across time and space,” Surf. Sci. Millennium Issue, 500, 323 (2002). doi: 10.1016/S0039-6028(01)01546-1
  358. E. A. Jarvis and E. A. Carter, “The role of reactive elements in thermal barrier coatings,” Comp. Sci. Eng., 4, 33 (2002). doi: 10.1109/5992.988645
  359. T. Klüner, N. Govind, Y. A. Wang, and E. A. Carter, “Periodic density functional embedding theory for complete active space self-consistent field and configuration interaction calculations: Ground and excited states,” J. Chem. Phys. 116, 42 (2002). doi: 10.1063/1.1420748
  360. F. Starrost, H. Kim, S. C. Watson, E. Kaxiras, and E. A. Carter, “Density-functional theory modeling of bulk magnetism with spin-dependent pseudopotentials,” Phys. Rev. B, 64, 235105 (2001). doi: 10.1103/PhysRevB.64.235105
  361. D. Walter and E. A. Carter, “Multi-reference weak pairs local configuration interaction: efficient calculations of bond breaking,” Chem.Phys. Lett., 346, 177 (2001). doi: 10.1016/S0009-2614(01)00966-6
  362. F. Starrost and E. A. Carter, “Quantum structural methods for the solid state and surfaces,” in the Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. Spencer, Eds. (Institute of Physics), 2, 1947 (2001).
  363. E. A. A. Jarvis, A. Christensen, and E. A. Carter, “Weak bonding of alumina coatings on Ni(111),” Surf. Sci., 487, 55 (2001). doi: 10.1016/S0039-6028(01)01071-8
  364. T. Kluener, N. Govind, Y. A. Wang, and E. A. Carter, “Prediction of Electronic Excited States of Adsorbates on Metal Surfaces from First Principles,” Phys. Rev. Lett., 86, 5954 (2001). doi: 10.1103/PhysRevLett.86.5954
  365. E. A. A. Jarvis and E. A. Carter, “Metallic Character of the Al2O3(0001)-(√31 x √31)R±9o Surface Reconstruction,” J. Phys. Chem. B, 105, 4045 (2001). doi: 10.1021/jp003587c
  366. A. Christensen and E. A. Carter, “Adhesion of ultrathin ZrO2(111) films on Ni(111) from first principles,” J. Chem. Phys, 114, 5816 (2001). doi: 10.1063/1.1352079
  367. A. Christensen, E. A. A. Jarvis, and E. A. Carter, “Atomic-Level Properties of Thermal Barrier Coatings: Characterization of Metal–Ceramic Interfaces,” in Chemical Dynamics in Extreme Environments, edited by R. A. Dressler, Advanced Series in Physical Chemistry, 11, Series Editor: C. Y. Ng (World Scientific, Singapore, 2001), pp 490-546. doi: 10.1142/9789812811882_0010
  368. R. L. Hayes, E. Fattal, N. Govind, and E. A. Carter, “Long Live Vinylidene! A New View of the H2C=C: → HC≡CH Rearrangement from ab Initio Molecular Dynamics,” J. Am. Chem. Soc., 123, 641 (2001). doi: 10.1021/ja000907x
  369. E. A. A. Jarvis, R. L. Hayes, and E. A. Carter, “Effects of Oxidation on the Nanoscale Mechanisms of Crack Formation in Aluminum,” ChemPhysChem, 2, 55(2001). doi: 10.1002/1439-7641(20010119)2:1<55::AID-CPHC55>3.0.CO;2-S
  370. A. Christensen and E. A. Carter, “First-principles characterization of a heteroceramic interface: ZrO2(001) deposited on an α−Al2O3(1102) substrate,” Phys. Rev. B, 62, 16968 (2000). doi: 10.1103/PhysRevB.62.16968
  371. Y. A. Wang and E. A. Carter, “Orbital-Free Kinetic-Energy Density Functional Theory,” in Theoretical Methods in Condensed Phase Chemistry, S. D. Schwartz, Ed., within the series “Progress in Theoretical Chemistry and Physics,” Kluwer, 117-184 (2002). doi.org/10.1007/0-306-46949-9_5
  372. S. C. Watson and E. A. Carter, “Linear-scaling parallel algorithms for the first principles treatment of metals,” Comp. Phys. Comm., 128, 67 (2000). doi: 10.1016/S0010-4655(00)00064-3
  373. E. A. A. Jarvis, E. Fattal, A. J. R. da Silva, and E. A. Carter, “Characterization of Photoionization Intermediates via ab Initio Molecular Dynamics,” J. Phys. Chem. A, 104, 2333 (2000). doi: 10.1021/jp9919866
  374. E. Fattal and E. A. Carter, “Ab Initio Reaction Energetics of Phosgene Decomposition by Zn2+ and Ni Atoms: Implications for Gas Mask Filters,” J. Phys. Chem. A, 104, 2248 (2000). (Cover Article) doi: 10.1021/jp992964m
  375. E. A. Carter and E. B. Stechel, “Tribute to William Andrew Goddard III,” J. Phys. Chem. A, 104, 2145 (2000). https://pubs.acs.org/doi/10.1021/jp000180z
  376. Y. A. Wang, N. Govind, and E. A. Carter, “Orbital-free kinetic-energy density functionals with a density-dependent kernel,” Phys. Rev. B, 60, 16350 (1999). doi: 10.1103/PhysRevB.60.16350; Erratum: Phys. Rev. B, 64, 089903-1 (2001). doi: 10.1103/PhysRevB.64.089903
  377. Y. A. Wang and E. A. Carter, “Improved lower bounds for uncertaintylike relationships in many-body systems,” Phys. Rev. A, 60, 4153 (1999). doi: 10.1103/PhysRevA.60.4153
  378. F. Terstegen, E. A. Carter, and V. Buss, “Interconversion Pathways of the Protonated β-Ionone Schiff Base: An Ab Initio Molecular Dynamics Study,”Int. J. Quant. Chem., 75, 141 (1999). doi: 10.1002/(SICI)1097-461X(1999)75:3<141::AID-QUA4>3.0.CO;2-9
  379. N. Govind, Y. A. Wang, and E. A. Carter, “Electronic-structure calculations by first-principles density-based embedding of explicitly correlated systems,” J. Chem. Phys., 110, 7677 (1999). doi: 10.1063/1.478679
  380. H. H. Wadleigh III, I. V. Ionova, and E. A. Carter, “Generalized symmetric Rayleigh–Ritz procedure applied to the closed-shell Hartree–Fock problem,” J. Chem. Phys., 110, 4152 (1999). doi: 10.1063/1.478299
  381. N. Rom, E. Fattal, A. K. Gupta, E. A. Carter, and D. Neuhauser, “Shifted-contour auxiliary-field Monte Carlo for molecular electronic structure,” J. Chem. Phys., 109, 8241 (1998). doi: 10.1063/1.477486
  382. S. C. Watson and E. A. Carter, “Spin-dependent pseudopotentials,” Phys. Rev. B, 58, R13309 (1998). doi: 10.1103/PhysRevB.58.R13309
  383. Y. A. Wang, N. Govind, and E. A. Carter, “Orbital-free kinetic-energy functionals for the nearly free electron gas,” Phys. Rev. B, 58, 13465 (1998). doi: 10.1103/PhysRevB.58.13465; Erratum: Phys. Rev. B, 64, 129901-1 (2001). doi: 10.1103/PhysRevB.60.17162
  384. N. Govind, Y. A. Wang, A. J. R. da Silva, and E. A. Carter, “Accurate ab initio energetics of extended systems via explicit correlation embedded in a density functional environment,” Chem. Phys. Lett., 295, 129 (1998). doi: 10.1016/S0009-2614(98)00939-7
  385. A. Christensen and E. A. Carter, “First-principles study of the surfaces of zirconia,” Phys. Rev. B, 58, 8050 (1998). doi: 10.1103/PhysRevB.58.8050
  386. C. C. Tazartes, C. R. Anderson, and E. A. Carter, “Automated Selection of Optimal Gaussian Fits to Arbitrary Functions in Electronic Structure Theory,” J. Comp.Chem., 19, 1300 (1998). doi: 10.1002/(SICI)1096-987X(199808)19:11<1300::AID-JCC10>3.0.CO;2-P
  387. B. E. Koel, D. A. Blank, and E. A. Carter, “Thermochemistry of the selective dehydrogenation of cyclohexane to benzene on Pt surfaces,” J. Mol. Catal A: Chemical., 131, 39 (1998). doi: 10.1016/S1381-1169(97)00255-0
  388. A. J. R. da Silva, J. W. Pang, E. A. Carter, and D. Neuhauser, “Anharmonic Vibrations via Filter Diagonalization of ab Initio Dynamics Trajectories,” J. Phys. Chem. A., 102, 881 (1998). doi: 10.1021/jp9727198
  389. S. Watson, B. J. Jesson, E. A. Carter, and P. A. Madden, “Ab initio pseudopotentials for orbital-free density functionals,” Europhys. Lett., 41, 37 (1998). doi: 10.1209/epl/i1998-00112-5
  390. E. Fattal, M. R. Radeke, G. Reynolds, and E. A. Carter, “Ab Initio Structure and Energetics for the Molecular and Dissociative Adsorption of NH3 on Si(100)-2 x 1,” J. Phys. Chem. B, 101, 8658 (1997). doi: 10.1021/jp9712967
  391. M. R. Radeke and E. A. Carter, “Ab Initio Dynamics of Surface Chemistry,” Ann. Rev. Phys. Chem., 48, 243 (1997). doi: 10.1146/annurev.physchem.48.1.243
  392. A. J. R. da Silva, H.-Y. Cheng, D. A. Gibson, K. L. Sorge, Z. Liu, and E. A. Carter, “Limitations of ab initio molecular dynamics simulations of simple reactions: F + H2 as a prototype,” Spectrochimica Acta Part A, 53, 1285 (1997). doi: 10.1016/S1386-1425(97)89474-7
  393. D. A. Gibson and E. A. Carter, “Ab initio molecular dynamics of pseudorotating Li5,” Chem. Phys. Lett., 271, 266 (1997). doi: 10.1016/S0009-2614(97)00484-3
  394. A. J. R. da Silva, M. R. Radeke, and E. A. Carter, “Ab initio molecular dynamics of H2 desorption from Si(100)-2 x 1,” Surf. Sci. Lett., 381, L628 (1997). doi: 10.1016/S0039-6028(97)00124-6
  395. G. Reynolds and E. A. Carter, “Removal of the bottleneck in local correlation methods,” Chem. Phys. Lett., 265, 660 (1997). doi: 10.1016/S0009-2614(96)01491-1
  396. M. R. Radeke and E. A. Carter, “Ab initio derived kinetic Monte Carlo model of H2 desorption from Si(100)-2×1,” Phys. Rev. B, 55, 4649 (1997). doi: 10.1103/PhysRevB.55.4649
  397. D. A. Gibson and E. A. Carter, “Generalized valence bond molecular dynamics at constant temperature,” Mol. Phys., 89, 1265 (1996). doi: 10.1080/002689796173165
  398. I. V. Ionova and E. A. Carter, “Error Vector Choice in Direct Inversion in the Iterative Subspace Method,” J. Comp. Chem., 17, 1836 (1996). doi: 10.1002/(SICI)1096-987X(199612)17:16<1836::AID-JCC4>3.0.CO;2-O
  399. G. Reynolds, T. J. Martinez, and E. A. Carter, “Local weak pairs spectral and pseudospectral singles and doubles configuration interaction,” J. Chem. Phys., 105, 6455 (1996). doi: 10.1063/1.472495
  400. M. R. Radeke and E. A. Carter, “A dynamically and kinetically consistent mechanism for H2 adsorption/desorption from Si(100)-2×1,” Phys. Rev. B, 54, 11803 (1996). doi: 10.1103/PhysRevB.54.11803
  401. L. E. Carter and E. A. Carter, “Simulated reaction dynamics of F atoms on partially fluorinated Si(100) surfaces,” Surf. Sci., 360, 200 (1996). doi: 10.1016/0039-6028(96)00620-6
  402. M. R. Radeke and E. A. Carter, “Ab initio explanation of the apparent violation of detailed balance for H2 adsorption/desorption from Si(100),” Surf. Sci., 355, L289 (1996). doi: 10.1016/0039-6028(96)00607-3
  403. L. E. Carter and E. A. Carter, “Ab Initio-Derived Dynamics for F2 Reactions with Partially Fluorinated Si(100) Surfaces: Translational Activation as a Possible Etching Tool,” J. Chem. Phys., 100, 873 (1996). doi: 10.1021/jp952905i
  404. T. J. Martinez and E. A. Carter, “Pseudospectral Methods Applied to the Electron Correlation Problem,” in Modern Electronic Structure Theory Part II, D. R. Yarkony, editor, Advanced Series in Physical Chemistry, Vol. 2, pp 1132-1165 (World Scientific, Singapore, 1995). doi: 10.1142/9789812832115_0006
  405. I. V. Ionova and E. A. Carter, “Direct inversion in the iterative subspace-induced acceleration of the ridge method for finding transition states,” J. Chem. Phys., 103, 5437 (1995). doi: 10.1063/1.470579
  406. T. J. Martinez and E. A. Carter, “Pseudospectral correlation methods on distributed memory parallel architectures,” Chem. Phys. Lett., 241, 490 (1995). doi: 10.1016/0009-2614(95)00654-M
  407. D. A. Gibson, I. V. Ionova, and E. A. Carter, “A comparison of Car—Parrinello and Born-Oppenheimer generalized valence bond molecular dynamics,” Chem. Phys. Lett., 240, 261 (1995). doi: 10.1016/0009-2614(95)00537-E
  408. T. J. Martinez and E. A. Carter, “Pseudospectral multireference single and double excitation configuration interaction,” J. Chem. Phys., 102, 7564 (1995). doi: 10.1063/1.469088
  409. T.-M. Chang and E. A. Carter, “Structures and Growth Mechanisms for Heteroepitaxial fcc(111) Thin Metal Films,” J. Phys. Chem., 99, 7637 (1995). doi: 10.1021/j100019a051
  410. Z. Liu, L. E. Carter, and E. A. Carter, “Full Configuration Interaction Molecular Dynamics of Na2 and Na3,”J. Phys. Chem., 99, 4355 (1995). doi: 10.1021/j100013a001
  411. M. R. Radeke and E. A. Carter, “Interfacial strain-enhanced reconstruction of Au multilayer films on Rh(100),” Phys. Rev. B, 51, 4388 (1995). doi: 10.1103/PhysRevB.51.4388
  412. I. V. Ionova and E. A. Carter, “Orbital-based direct inversion in the iterative subspace for the generalized valence bond method,” J. Chem. Phys., 102, 1251 (1995). doi: 10.1063/1.468912
  413. L. E. Carter and E. A. Carter, “F2 reaction dynamics with defective Si(100): defect-insensitive surface chemistry,” Surf. Sci., 323, 39 (1995). doi: 10.1016/0039-6028(94)00622-9
  414. T.-M. Chang and E. A. Carter, “Mean-field theory of heteroepitaxial thin metal film morphologies,” Surf. Sci., 318, 187 (1994). doi: 10.1016/0039-6028(94)90354-9
  415. G. G. Reynolds and E. A. Carter, “Bimetallic Thermochemistry: Perturbations in M-H and M-C Bonds Due to the Presence of M’,” J. Phys. Chem., 98, 8144 (1994). doi: 10.1021/j100084a037
  416. L. E. Carter and E. A. Carter, “Influence of single atomic height steps on F2 reactions with Si(100)-2×1,” J. Vac. Sci. Tech. A, 12, 2235 (1994). doi: 10.1116/1.579121
  417. C. J. Wu, I. V. Ionova, and E. A. Carter, “First-principles-derived rate constants for H adatom surface diffusion on Si(100)-2×1,” Phys. Rev. B, 49, 13488 (1994). doi: 10.1103/PhysRevB.49.13488
  418. I. V. Ionova and E. A. Carter, “O(N3) scaling of two-electron integrals during molecular geometry optimization,” J. Chem. Phys., 100, 6562 (1994). doi: 10.1063/1.467065
  419. T. J. Martinez and E. A. Carter, “Pseudospectral Møller–Plesset perturbation theory through third order,” J. Chem. Phys., 100, 3631 (1994). doi: 10.1063/1.466350
  420. L. E. Carter, S. Khodabandeh, P. C. Weakliem, and E. A. Carter, “First-principles-derived dynamics of F2 reactive scattering on Si(100)-2×1,” J. Chem. Phys., 100, 2277 (1994). doi: 10.1063/1.466526
  421. B. Hartke and E. A. Carter, “Ab initio molecular dynamics simulated annealing at the generalized valence bond level. Application to a small nickel cluster,” Chem. Phys. Lett., 216, 324 (1993). doi: 10.1016/0009-2614(93)90103-8
  422. D. A. Gibson and E. A. Carter, “Time-Reversible Multiple Time Scale ab Initio Molecular Dynamics,” J. Phys. Chem., 97, 13429 (1993). doi: 10.1021/j100153a002
  423. C. J. Wu, I. V. Ionova, and E. A. Carter, “Ab initio H2 desorption pathways for H/Si(100): the role of SiH2(a),” Surf. Sci., 295, 64 (1993). doi: 10.1016/0039-6028(93)90185-M
  424. L. E. Carter, P. C. Weakliem, and E. A. Carter, “Temperature and composition dependent structures of SixGe1-x/Si and SixGe1-x/Ge superlattices,” J. Vac. Sci. Tech. A, 11, 2059 (1993). doi: 10.1116/1.578410
  425. T. J. Martinez and E. A. Carter, “Pseudospectral double excitation configuration interaction,” J. Chem. Phys., 98, 7081 (1993). doi: 10.1063/1.464751
  426. S. Khodabandeh and E. A. Carter, “Methyl substitution in carbenes: Lack of steric or hyperconjugative stabilization effects on the CH3CH singlet-triplet splitting,” J. Phys. Chem., 97, 4360 (1993). doi: 10.1021/j100119a018
  427. B. C. Bolding and E. A. Carter, “Two-dimensional Metallic Adlayers: Dispersion Versus Island Formation,” in “On Clusters and Clustering, From Atoms to Fractals,” P. J. Reynolds, ed.; in the series “Random Processes and Materials,” (Elsevier, Amsterdam, 1993), 167. doi: 10.1016/B978-0-444-89022-1.50021-3
  428. I. V. Ionova and E. A. Carter, “Ridge method for finding saddle points on potential energy surfaces,” J. Chem. Phys., 98, 6377 (1993). doi: 10.1063/1.465100
  429. H. Wang and E. A. Carter, “Metal-metal bonding in Engel-Brewer intermetallics: “Anomalous” charge transfer in ZrPt3,” J. Am. Chem. Soc., 115, 2357 (1993). doi: 10.1021/ja00059a034
  430. P. C. Weakliem and E. A. Carter, “Surface chemical reactions studied via ab initio-derived molecular dynamics simulations: Fluorine etching of Si(100),” J. Chem. Phys., 98, 737 (1993). doi: 10.1063/1.464620
  431. B. Hartke, D. A. Gibson, and E. A. Carter, “Multiple Time Scale Hartree–Fock Molecular Dynamics,” Int. J. Quantum Chem., 45, 59 (1993). doi: 10.1002/qua.560450109
  432. B. C. Bolding and E. A. Carter, “Minimization of Periodic-Boundary-Induced Strain in Interface Simulations,” Molecular Simulation, 9, 269 (1992). doi: 10.1080/08927029208047433
  433. B. Hartke and E. A. Carter, “Ab Initio molecular dynamics with correlated molecular wave functions: Generalized valence bond molecular dynamics and simulated annealing,” J. Chem. Phys., 97, 6569 (1992). doi: 10.1063/1.463660
  434. C. J. Wu and E. A. Carter, “Anisotropic diffusion of hydrogen atoms on the Si(100)-2×1 surface,” Phys. Rev. B, 46, 4651 (1992). doi: 10.1103/PhysRevB.46.4651
  435. T. J. Martinez, A. Mehta, and E. A. Carter, “Pseudospectral full configuration interaction,” J. Chem. Phys., 97, 1876 (1992). doi: 10.1063/1.463176; Erratum: 99, 4238 (1993). doi: 10.1063/1.466235
  436. P. C. Weakliem, C. J. Wu, and E. A. Carter, “First-Principles-Derived Dynamics of a Surface Reaction: Fluorine Etching of Si(100),” Phys. Rev. Lett., 69, 200 (1992). doi: 10.1103/PhysRevLett.69.200; Erratum: 69, 1475 (1992). doi: 10.1103/PhysRevLett.69.1475
  437. P. C. Weakliem and E. A. Carter, “Surface and bulk equilibrium structures of silicon-germanium alloys from Monte Carlo simulations,” Phys. Rev. B, 45, 13458 (1992). doi: 10.1103/PhysRevB.45.13458
  438. C. J. Wu and E. A. Carter, “Structures and adsorption energetics of chemisorbed fluorine atoms on Si(100)-2×1,” Phys. Rev. B, 45, 9065 (1992). doi: 10.1103/PhysRevB.45.9065
  439. B. C. Bolding and E. A. Carter, “Effect of strain on thin film growth: deposition of Ni on Ag(100),” Surface Sci., 268, 142 (1992). doi: 10.1016/0039-6028(92)90957-8
  440. P. C. Weakliem and E. A. Carter, “Constant temperature molecular dynamics simulations of Si(100) and Ge(100): Equilibrium structures and short-time behavior,” J. Chem. Phys., 96, 3240 (1992). doi: 10.1063/1.461968
  441. B. Hartke and E. A. Carter, “Spin eigenstate-dependent Hartree—Fock molecular dynamics,” Chem. Phys. Lett., 189, 358 (1992). doi: 10.1016/0009-2614(92)85215-V
  442. H. Wang and E. A. Carter, “Metal-Metal Bonding in Transition-Metal Clusters with Open d Shells: Pt3,”J. Phys. Chem., 96, 1197 (1992). doi: 10.1021/j100182a033
  443. C. J. Wu and E. A. Carter, “Mechanistic Predictions for Fluorine Etching of Si(100),” J. Am. Chem. Soc., 113, 9061 (1991). doi: 10.1021/ja00024a005
  444. C. J. Wu and E. A. Carter, “Adsorption of hydrogen atoms on the Si(100)-2×1 surface: implications for the H2 desorption mechanism,” Chem. Phys. Lett., 185, 172 (1991). doi: 10.1016/0009-2614(91)80159-U
  445. C. J. Wu and E. A. Carter, “Ab Initio Thermochemistry for Unsaturated C2 Hydrocarbons,” J. Phys. Chem., 95, 8352 (1991). doi: 10.1021/j100174a058
  446. B. C. Bolding and E. A. Carter, “Coverage and temperature dependence of the morphology of strained metal overlayers: Deposition of Pd on a bcc(110) substrate,” Phys. Rev. B, 44, 3251 (1991). doi: 10.1103/PhysRevB.44.3251
  447. E. A. Carter and J. T. Hynes, “Solvation dynamics for an ion pair in a polar solvent: Time-dependent fluorescence and photochemical charge transfer,” J. Chem. Phys., 94, 5961 (1991). doi: 10.1063/1.460431
  448. G. W. Smith and E. A. Carter, “Interactions of NO and CO with Pd and Pt Atoms,” J. Phys. Chem., 95, 2327 (1991). doi: 10.1021/j100159a040; Erratum: 95, 10828 (1991). doi: 10.1021/j100179a056
  449. B. C. Bolding and E. A. Carter, “Simulation of lattice-strain-driven bcc → fcc phase transitions in Pd thin films,” Phys. Rev. B, 42, 11380 (1990). doi: 10.1103/PhysRevB.42.11380
  450. P. C. Weakliem, G. W. Smith, and E. A. Carter, “Subpicosecond interconversion of buckled and symmetric dimers on Si(100),”Surface Sci. Lett., 232, L219 (1990). doi: 10.1016/0039-6028(90)90112-L
  451. C. J. Wu and E. A. Carter, “Ab Initio Bond Strengths in Ethylene and Acetylene,” J. Am. Chem. Soc., 112, 5893 (1990). doi: 10.1021/ja00171a047
  452. E. A. Carter, “Linking chemical physics and surface science: thermochemistry of adsorbates from purely gas phase data,” Chem. Phys. Lett., 169, 218 (1990). doi: 10.1016/0009-2614(90)85191-E
  453. E. A. Carter and B. E. Koel, “A method for estimating surface reaction energetics: Application to the mechanism of ethylene decomposition on Pt(111),” Surf. Sci., 226, 339 (1990). doi: 10.1016/0039-6028(90)90498-W
  454. J. T. Hynes, E. A. Carter, G. Ciccotti, H. J. Kim, D. A. Zichi, M. Ferrario, and R. Kapral, “Environmental Dynamics and Electron Transfer Reactions,” in Perspectives in Photosynthesis, J. Jortner, and B. Pullman, Eds. (Kluwer, Netherlands, 1990) 133-148. doi: 10.1007/978-94-009-0489-7_12
  455. M. E. Bartram, B. E. Koel, and E. A. Carter, “Electronic effects of surface oxygen on the bonding of NO to Pt(111),” Surf. Sci., 219, 467 (1989). doi: 10.1016/0039-6028(89)90522-0
  456. E. A. Carter, G. Ciccotti, J. T. Hynes, and R. Kapral, “Constrained reaction coordinate dynamics for the simulation of rare events,” Chem. Phys. Lett., 156, 472 (1989). doi: 10.1016/S0009-2614(89)87314-2
  457. E. A. Carter and J. T. Hynes, “Solute-Dependent Solvent Force Constants for Ion Pairs and Neutral Pairs in a Polar Solvent,” J. Phys. Chem., 93, 2184 (1989). doi: 10.1021/j100343a002
  458. E. A. Carter and W. A. Goddard III, “Chemisorption of oxygen, chlorine, hydrogen, hydroxide, and ethylene on silver clusters: A model for the olefin epoxidation reaction,” Surf. Sci., 209, 243 (1989). doi: 10.1016/0039-6028(89)90071-X
  459. E. A. Carter and W. A. Goddard III, “Relationships between Bond Energies in Coordinatively Unsaturated and Coordinatively Saturated Transition-Metal Complexes: A Quantitative Guide for Single, Double, and Triple Bonds,” J. Phys. Chem., 92, 5679 (1988). doi: 10.1021/j100331a026
  460. E. A. Carter and W. A. Goddard III, “The Surface Atomic Oxyradical Mechanism for Ag-Catalyzed Olefin Epoxidation,” J. Catal., 112, 80 (1988). doi: 10.1016/0021-9517(88)90122-4
  461. E. A. Carter and W. A. Goddard III, “The C=C Double Bond of Tetrafluoroethylene,” J. Am. Chem. Soc., 110, 4077 (1988). doi: 10.1021/ja00220a079
  462. E. A. Carter and W. A. Goddard III, “Early- versus Late-Transition-Metal-Oxo Bonds: The Electronic Structure of VO+ and RuO+,” J. Phys. Chem., 92, 2109 (1988). doi: 10.1021/j100319a005
  463. E. A. Carter and W. A. Goddard III, “Correlation-consistent configuration interaction: Accurate bond dissociation energies from simple wave functions,” J. Chem. Phys., 88, 3132 (1988). doi: 10.1063/1.453957
  464. E. A. Carter and W. A. Goddard III, “Modeling Fischer–Tropsch Chemistry: The Thermochemistry and Insertion Kinetics of ClRuH(CH2),” Organometallics, 7, 675 (1988). doi: 10.1021/om00093a017
  465. E. A. Carter and W. A. Goddard III, “Correlation-consistent singlet-triplet gaps in substituted carbenes,” J. Chem. Phys., 88, 1752 (1988). doi: 10.1063/1.454099
  466. E. A. Carter and W. A. Goddard III, “New Predictions for Singlet–Triplet Gaps of Substituted Carbenes,” J. Phys. Chem., 91, 4651 (1987). doi: 10.1021/j100302a003
  467. E. A. Carter and W. A. Goddard III, “Methylidene Migratory Insertion into an Ru-H Bond,” J. Am. Chem. Soc., 109, 579 (1987). doi: 10.1021/ja00236a044
  468. E. A. Carter and W. A. Goddard III, “Electron correlation, basis sets, and the methylene singlet–triplet gap,“ J. Chem. Phys., 86, 862 (1987). doi: 10.1063/1.452287
  469. E. A. Carter and W. A. Goddard III, “Bonding in Transition-Metal Methylene Complexes. III. Comparison of Cr and Ru Carbenes; Prediction of Stable LnM(CXY) Systems.” J. Am. Chem. Soc., 108, 4746 (1986). doi: 10.1021/ja00276a011
  470. E. A. Carter and W. A. Goddard III, “Bonding in Transition-Metal-Methylene Complexes. II. (RuCH2)+, a Complex Exhibiting Low-Lying Methylidene-like and Carbene-like States.” J. Am. Chem. Soc., 108, 2180 (1986). doi: 10.1021/ja00269a010
  471. E. A. Carter and W. A. Goddard III, “Relation between Singlet–Triplet Gaps and Bond Energies.” J. Phys. Chem., 90, 998 (1986). doi: 10.1021/j100278a006
  472. M. A. Hanratty, E. A. Carter, J. L. Beauchamp, W. A. Goddard III, A. E. Illies, and M. T. Bowers, “Electronic states of chromium carbene ions characterized by high-resolution translational energy loss spectroscopy,” Chem. Phys. Lett., 123, 239 (1986). doi: 10.1016/0009-2614(86)80064-1
  473. W. A. Goddard III, J. J. Low, B. D. Olafson, A. Redondo, Y. Zeiri, M. L. Steigerwald, E. A. Carter, J. N. Allison, and R. Chang, “The Role of Oxygen and Other Chemisorbed Species on Surface Processes for Metals and Semiconductors; Approaches to Dynamical Studies of Surface Processes,” Proceedings of the Symposium on The Chemistry and Physics of Electrocatalysis, J.D.E. McIntyre, J. Weaver, and E.B. Yeager, Eds. (The Electrochemical Society, Inc., Pennington, New Jersey, 1984) Vol. 84-12, pp. 63-95.
  474. E. A. Carter and W. A. Goddard III, “The Chromium Methylidene Cation: CrCH2+,” J. Phys. Chem., 88, 1485 (1984). doi: 10.1021/j150652a009