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B3.2 Quantum structural methods for the solid state 
and surfaces 
 
Frank Starrost and Emily A Carter 

We are entering an era when condensed matter chemistry and physics can be predicted from theory with increasing 
realism and accuracy. This is particularly important in cases where experiments lead to ambiguous conclusions, for 
regimes in which there still exists no experimental probe and for predictions of the properties of modern materials in 
order to select the most promising ones for synthesis and experimental testing. For example, continuing miniaturization 
in microelectronics heightens the importance of understanding of quantum effects, which computational materials 
theory is poised to provide, based to some degree on the methods presented here. 

Our intention is to give a brief survey of advanced theoretical methods used to determine the electronic and geometric 
structure of solids and surfaces. The electronic structure encompasses the energies and wavefunctions (and other 
properties derived from them) of the electronic states in solids, while the geometric structure refers to the equilibrium 
atomic positions. Quantities that can be derived from the electronic structure calculations include the electronic 
(electron energies, charge densities), vibrational (phonon spectra), structural (lattice constants, equilibrium structures), 
mechanical (bulk moduli, elastic constants) and optical (absorption, transmission) properties of crystals. We will also 
report on techniques used to study solid surfaces, with particular examples drawn from chemisorption on transition 
metal surfaces. 

In his chapter on the fundamentals of quantum mechanics of condensed phases (A1.3), James R Chelikowsky 
introduces the plane wave pseudopotential method. Here, we will complement his chapter by introducing in some detail 
tight-binding methods as the simplest pedagogical illustration of how one can construct crystal wavefunctions from 
atomic-like orbitals. These techniques are very fast but generally not very accurate. After reviewing some of the efforts 
made to improve upon the local density approximation (LDA, explained in A1.3), we will discuss general features of 
the technically more complex all-electron band structure methods, focusing on the highly accurate but not very fast 
linear augmented plane wave (LAPW) technique as an example. We will introduce the idea of orbital-free electronic 
structure methods based directly on density functional theory (DFT), the computational effort of which scales linearly 
with size, allowing very large systems to be studied. The periodic Hartree–Fock (HF) method and the promising 
quantum Monte Carlo (QMC) techniques will be briefly sketched, representing many-particle approaches to the 
condensed phase electronic structure problem. 

In the final section, we will survey the different theoretical approaches for the treatment of adsorbed molecules on 
surfaces, taking the chemisorption on transition metal surfaces, a particularly difficult to treat yet extremely relevant 
surface problem [1], as an example. While solid state approaches such as DFT are often used, hybrid methods are also 
advantageous. Of particular importance in this area is the idea of embedding, where a small cluster of surface atoms 
around the adsorbate is treated with more care than the surrounding region. The advantages and disadvantages of the 
approaches are discussed. 

B3.2.1 INTRODUCTION 

-2-

 

Page 1 of 40B3.2 Quantum Structural Methods for the Solid State and Surfaces

8/3/2005file://C:\Documents and Settings\lhebditc\Desktop\EAC-116.htm



B3.2.2.1 TIGHT BINDING: FROM EMPIRICAL TO SELF-CONSISTENT 

The wavefunction in a solid can be thought to originate from two different limiting cases. One extreme is the nearly 
free electron (NFE) approach. The idea here is that the valence electrons are hardly affected by the periodic potential of 
the atomic cores. Their wavefunctions can then be assumed to be easily described as linear combinations of the 
solutions for free electrons: the plane waves, exp(ik · r). The NFE approximation is particularly useful for so-called 
NFE metals, such as the alkali metals. At the other extreme, the solid can be viewed as constructed from individual 
atoms. The valence wavefunctions of the solid are then approximated as linear combinations of the wavefunctions of 
the valence electrons of the atoms (see also section A1.3.5.6). In this case, the electrons are considered to be ‘tightly 
bound’ to the atoms. This is a physically reasonable view of covalently bound solids and molecules, where localized 
chemical bonds are the norm (bulk silicon, organic or biomolecules etc). Methods which employ this view of the 
electrons in the solid are called tight-binding (TB) methods. The wavefunctions are generally expanded in atomic 
orbitals (in a linear combination of atomic orbitals (LCAO) formalism) or similarly localized functions. 

An advantage of TB is that generally the number of basis functions linearly combined to give the wavefunctions is 
rather small. The solution of the Schrödinger equation in these bases is then fast because the matrices representing the 
operators are small. Also, the construction of the Hamiltonian matrix elements is fast, since generally a number of, 
sometimes drastic, approximations are made. At the same time, however, the small basis set generally limits the quality 
of the TB results, since the variational freedom for the solution of the Schrödinger equation is not as high as in other 
methods. The approximations of Hamiltonian matrix elements often further reduce the quality of the results. 

Today, the term TB method is generally understood to refer to a technique using TB basis functions in which the 
Hamiltonian matrix elements are adjusted to reproduce results from experiments and/or from more sophisticated 
electronic structure methods [2]. Depending on the degree of dependence on external parameters, the methods are 
called empirical or semi-empirical TB. A number of approaches are used for the fitting of the TB parameters, generally 
a tough minimization task with many minima (using genetic algorithms has proved quite efficient [3, 4]). It has been 
noted that ‘great care is needed to test the resulting model for reasonable behavior outside the range of the fit’ [5, 6]. A 
disadvantage of the empirical methods is that it is difficult to distinguish to what extent the parametrization or the 
method itself is responsible for errors in the results. 

Frequent approximations made in TB techniques in the name of achieving a fast method are the use of a minimal basis 
set, the lack of a self-consistent charge density, the fitting of matrix elements of the potential, the assumption of an 
orthogonal overlap matrix, a cut-off radius used in the integration to determine matrix elements, and the neglect of 
matrix elements that require three-centre integrals and crystal-field terms. We will now provide more details on these 
approximations. 

Generally, the following ansatz for the wavefunction is made: 
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with the elements of the Hamiltonian matrix Hα λβμ ≡ 〈ϕα λ|H|ϕβ μ〉 and the overlap matrix Sαλβμ ≡ 〈ϕα λ|ϕβμ〉. In the 
TB approximation, the basis functions are thought to be sufficiently localized such that contributions to the 
Hamiltonian matrix usually are accounted for only up to at most the third or fourth neighbour. Frequently a minimal 
basis set is used, i.e. a single orbital ϕα λ is used per atom and per orbital symmetry to expand the wavefunction. 

In orthogonal TB methods, the overlap matrix is assumed to be diagonal, even though the basis functions of adjacent 
sites ordinarily are not orthogonal [6]. Harrison has shown that this approximation can be compensated for by 
adjustments to the Hamiltonian matrix elements (these adjustments are arrived at automatically in methods depending 
on fitting, for example, a DFT band structure) [7]. However, this approach reduces the transferability of the TB 
parameters to other structures [8]. Including the overlap matrix brings with it the additional cost of its calculation and 
solving the generalized eigenvalue problem, see equation (B3.2.1), rather than an ordinary eigenvalue problem. 

One can construct an effective potential, written here in the DFT language (see, for example, equation A1.3.38 of A1.3) 
as 

To rationalize the ‘two-centre approximation’, the effective potential is written as 

 

where veff,l is centred on the atom l and vanishes away from the atom, which need not involve any approximation.
 

In the calculation of the elements 

 

with T = - 2 the kinetic energy operator, several types of potential matrix elements can be distinguished [6]:
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where ϕαλ(r) = 〈r|ϕαλ〉 represents an atomic orbital of symmetry α (such as s, px, py, pz) at atom l. 

This yields the generalized eigenvalue problem 

 
(B3.2.1)

(B 3.2.2)

(1) Three-centre terms, i.e. l ≠ m ≠ n. These are frequently neglected, in what is called the two-centre approximation, 
based on the assumed strong localization of the orbitals ϕαλ(r). 
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Most TB approaches are not charge self-consistent. This means that they do not ensure that the charge derived from the 
wavefunctions yields the effective potential veff assumed in their calculation. Some methods have been developed 
which yield charge densities consistent with the electronic potential [14, 15 and 16]. 

The localized nature of the atomic basis set makes it possible to implement a linear-scaling TB algorithm, i.e. a TB 
method that scales linearly with the number of electrons simulated [17]. (For more information on linear scaling 
methods, see section B3.2.3.3.) 

The accuracy of most TB schemes is rather low, although some implementations may reach the accuracy of more 
advanced self-consistent LCAO methods (for examples of the latter see [18, 19 and 20]). However, the advantages of 
TB are that it is fast, provides at least approximate electronic properties and can be used for quite large systems (e.g., 
thousands of atoms), unlike some of the more accurate condensed matter methods. TB results can also be used as input 
to determine other properties (e.g., photoemission spectra) for which high accuracy is not essential. 

B3.2.2.2 APPLICATIONS OF TIGHT-BINDING METHODS 

TB methods have been widely used to study properties of simple semiconductors such as Si [11] and GaN [16]. In the 
latter study, the effect of dislocations on the electronic structure of GaN was investigated with a view toward 
understanding how dislocations affect the material’s optical properties. The large supercell of 224 atoms led to TB as 
the method of choice. This particular variant of TB fits TB matrix elements to DFT-LDA results and solves self-
consistently for atomic charges. It has also been used to predict reaction energetics of organic molecules, the structure 
of large biomolecules and the surface geometry and band structure of III–V semiconductors [15]. The TB method is 
expected to provide qualitatively reasonable results for systems where localized atomic charges make sense and hence 
is not expected to perform as well for metallic systems. Despite potential problems of TB for metals, the TB approach 
has also been used to study the phonon spectrum of the transition metal molybdenum [6], the elastic constants, 
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(2) Inter-atomic two-centre matrix elements 〈ϕα λ|veff,l + veff,m|ϕβ μ〉. These matrix elements represent the hopping 
of electrons from one site to another. They can be described [7] as linear combinations of so-called Slater–Koster 
elements [9]. The coefficients depend only on the orientation of the atoms l and m in the crystal. For elementary 
metals described with s, p, and d basis functions there are ten independent Slater–Koster elements. In the 
traditional formulation, the orientation is neglected and the two-centre elements depend only on the distance 
between the atoms [6]. (In several models [6, 10], they have been made dependent on the environment of the 
atoms l and m.) These elements are generally fitted to reproduce DFT results such as the band structure or the 
values of DFT matrix elements in diatomics. 

(3) Intra-atomic matrix elements, or on-site terms, with l = m. Traditionally, the potential contributions from other 
atomic sites, veff,n≠ λ=μ, so-called crystal-field terms, are neglected [10]. In this case, then the only non-zero on-
site terms have α = β, since basis functions on the same site are orthogonal atomic orbitals. There are methods 
which include these crystal-field terms [11, 12]. Physically, these diagonal elements represent the energy 
required to place an electron in a specific orbital. In some implementations, they are set to the orbital energy 
values of the neutral free atom [13], guaranteeing the correct limit for isolated atoms. However, this approach 
ignores the potential contributions to the diagonal elements due to different environments in a molecule or 
crystal; these are taken into account in other variants of the method [6, 10, 11]. 
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vacancies and surfaces of monatomic transition and noble metals and the Hall coefficient of complex perovskite 

Page 4 of 40B3.2 Quantum Structural Methods for the Solid State and Surfaces

8/3/2005file://C:\Documents and Settings\lhebditc\Desktop\EAC-116.htm



Encyclopedia of Chemical Physics and Physical Chemistry 
Copyright 2001 by Institute of Physics Publishing 

  

 

crystals [10]. As an example of data available from a TB calculation, a TB variant of extended Hückel theory [21, 22] 
was used to describe the initial states in photoemission from GaN [23]. The parameters were fitted to the bulk band 
structure En(k) (for a definition, see section A1.3.6). As displayed in figure (B3.2.1) good agreement is found for the 
occupied states (negative energies), while larger differences for the conduction bands (positive energies) reveal a 
typical problem of the TB methods: they are far less capable of describing the delocalized conduction band states (the 
same is true for delocalized valence states in a metal, as mentioned above). In figure (B3.2.2) we show a series of 
calculated photoemission spectra compared to experimental results [23]. The dispersion of the main peaks as a function 
of emission angle and photon energy agrees reasonably well in theory and experiment. 

 
 

 

Figure B3.2.1. The band structure of hexagonal GaN, calculated using EHT-TB parameters determined by a genetic 
algorithm [23]. The target energies are indicated by crosses. The target band structure has been calculated with an ab 
initio pseudopotential method using a quasiparticle approach to include many-particle corrections [194]. 
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In this section, we briefly review the basic elements of DFT and the LDA. We then focus on improvements suggested 
to remedy some of the shortcomings of the LDA (see section B3.2.3.1). A wide variety of techniques based on DFT 
have been developed to calculate the electron density. Many approaches do not calculate the density directly but rather 
solve for either a set of single-electron orbitals, or the Green’s function, from which the density is derived.  

In section B3.2.3.2, we introduce a number of techniques commonly referred to as ab initio all-electron electronic 
structure methods. Ab initio methods, in particular, aim at calculating the energies of electrons and their wavefunctions 
as accurately as possible, introducing as few adjustable parameters as possible. (Empirical or semi-empirical methods 
include the empirical pseudopotential approach (see section A1.3.5.5) and many TB techniques (see section B3.2.2).) 
Within the ab initio band structure approach, two communities exist that differ in their treatment of the singular nature 
of realistic, Coulomb-like crystal potentials. In the pseudopotential approach discussed by Chelikowsky in chapter 
A1.3, the Coulomb singularity (-Z/r) of the crystal potential is replaced by a smoother function, whereas in the so-
called ‘all-electron’ approach, the Coulomb singularity is retained. The pseudopotential transformation limits the range 
of electron energies which can be accessed. However, since the pseudo-wavefunction is much smoother than the all-
electron wavefunction (which has large oscillations near the nucleus), the pseudopotential allows the use of a plane 

Encyclopedia of Chemical Physics and Physical Chemistry 
Copyright 2001 by Institute of Physics Publishing 

  

 

 

Figure B3.2.2. A series of photoemission spectra. The angles give the polar angle of electron emission at the stated 
photon energy scanning the surface Brillouin zone from  to . Left: A calculation using the tight-binding 
parametrization (given the band structure in figure (B3.2.1)) for the initial states [23]. Right: Experimental spectra by 
Dhesi et al [195]. The difference in binding energies is due to the experimental difficulty in determining the Fermi 
energy [23]. (Experimental figure by Professor K E Smith.) 

 
B3.2.3 FIRST-PRINCIPLES ELECTRONIC STRUCTURE METHODS 
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wave basis set, which is comparatively easy to handle. In principle, the all-electron methods have no limitation on the 
energy range of calculations. This is achieved by a sophisticated representation of the wavefunction. 
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has as its minimum value the correct ground-state energy associated with vext(r). Here, the first term on the right-hand 
side represents the energy due to an external potential, including the electron–nuclear potential, while the second term 
is the classical Coulomb energy of the electronic system. The functional G[ρ] is valid for any number of electrons and 
any external potential, but it is unknown and further steps are necessary to approximate it. 

Kohn and Sham [25] decompose G[ρ] into the kinetic energy of an analogous set of non-interacting electrons with the 
same density ρ(r) as the interacting system, 

 

(where ψi(r) = 〈r|ψi〉 is the wavefunction of electron i), and the exchange and correlation energy of an interacting 
system with density ρ(r), Exc[ρ]. The functional Exc[ρ] is not known exactly. Physically, it represents all the energy 
corrections beyond the Hartree term to the independent-particle model, i.e. the non-classical many-body effects of 
exchange and correlation (xc) and the difference between the kinetic energy of the interacting electron system T[ρ] and 
the analogous non-interacting system Ts[ρ]. 

In the LDA, the exchange and correlation energy is approximated using the exchange and correlation energy of the 
homogeneous electron gas at the same density (see section A1.3.3.3). The crystal density is obtained by solving the 
single-particle Kohn–Sham equation 
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The so-called orbital-free DFT technique, which aims to directly calculate the electron density for which the total 
energy is minimal, is presented as an example of methods whose computational effort scales linearly with system size 
(see section B3.2.3.3). In section B3.2.3.4, we discuss the periodic HF method, an alternative approach to DFT that 
offers a well defined starting point for many-particle corrections. Finally, the two most frequently used QMC 
techniques are described in section B3.2.3.5. 

B3.2.3.1 THE LOCAL DENSITY APPROXIMATION AND BEYOND 

In DFT, the electronic density rather than the wavefunction is the basic variable. Hohenberg and Kohn showed [24] that 
all the observable ground-state properties of a system of interacting electrons moving in an external potential vext(r) are 
uniquely dependent on the charge density ρ(r) that minimizes the system’s total energy. However, there is no known 
formula to calculate from the density the total energy of many electrons moving in a general potential. Hohenberg and 
Kohn proved that there exists a universal functional of the density, called G[ρ], such that the expression 

 

(B 3.2.3)
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(B 3.2.4)
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for a self-consistent potential veff, i.e. a potential which is produced by the density ρ. In bulk crystal calculations, the 
index i runs over both the Bloch vector k (see section A1.3.4) and the band index n (in a simple crystal, this band could 
be derived, for example, entirely from s states). The solutions to equation (B3.2.4) are often called Kohn–Sham 
orbitals. The crystal density is then 

 

The eigenenergy Ei can be defined as the derivative of the total energy of the many-electron system with respect to the 
occupation number of a specific orbital [26]. In HF theory (where equation (B3.2.4) applies and the veff contains a non-
local exchange operator, see section A1.3.1.2 and chapter B3.1), Koopmans’ theorem states that the single-particle 
eigenvalue is the negative of the ionization energy (neglecting the relaxation of the electronic system). In contrast, the 
identification of the highest occupied Kohn–Sham eigenvalue with the negative of the ionization energy is a 
controversial subject [27]. While there is no rigorous connection between eigenvalue differences and excitation 
energies in either HF or DF theory, comparisons of these values are common practice (see below for more appropriate 
methods). Relative differences among occupied single-particle energies often agree well with the experiment. Even 
though DFT only provides a solution for the ground state of the electronic system, the energy differences in the lower 
conduction bands, i.e. low-energy excited states, often are represented surprisingly well, too. However, in LDA 
calculations of semiconductors and insulators, almost always the size of the gap between the valence band maximum 
and the conduction band minimum is underestimated, since many-particle effects are incorrectly represented by the 
parametrized exchange-correlation energy (see, for example, [28]). One ad hoc remedy, which works well for many 
systems and which is employed in the examples presented here, is to use what is amusingly referred to as a scissor 
operator, i.e. a rigid shift, to correct the gap size [29, 30]. Typically the shift is determined by knowing, for example, 
the DFT error in predicting the measured optical band gap. The entire conduction band is shifted rigidly upward by the 
amount to match the experimental band gap. 

More advanced techniques take into account quasiparticle corrections to the DFT-LDA eigenvalues. Quasiparticles are 
a way of conceptualizing the elementary excitations in electronic systems. They can be determined in band structure 
calculations that properly include the effects of exchange and correlation. In the LDA, these effects are modelled by the 
exchange–correlation potential vLDA

xc. In order to more accurately account for the interaction between a particle and 
the rest of the system, the notion of a local potential has to be generalized and a non-local, complex and energy-
dependent exchange–correlation potential has to be introduced, referred to as the self-energy operator Σ(r, r';E). The 
self-energy can be expanded in terms of the screened Coulomb potential W, where W = –1v is the Coulomb interaction 
v screened by the inverse dielectric function –1. In a lowest order expansion in W, the self-energy can be approximated 
as Σ = GW, giving the GW approximation [31]. Here G is the one-electron Green’s function describing the propagation 
of an additional electron injected into a system of other electrons (it can also describe the extraction of an electron). 
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To be a bit more explicit (following [32, 33]), the quasiparticle energies and wavefunctions are given by 

 

where T is the kinetic energy operator, vext is the external potential due to the ions, and vH is the Hartree Coulomb 
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interaction. Since the self-energy operator in general is non-Hermitian, the quasiparticle energies Enk are complex in 
general, and the imaginary part gives the lifetime of the quasiparticle. To first order in W, the self-energy is then given 
by 

 

where δ is a positive infinitesimal and ω corresponds to an excitation frequency. The inputs are the full interacting 
Green’s function, 

 

where δnk is an infinitesimal and the dynamically screened Coulomb interaction,
 

 

where –1 is the inverse dielectric matrix, v(r) = 1/|r| and Ω is the volume of the system. Usually the calculations start 
with the construction of the Green’s function and the screened Coulomb potential from self-consistent LDA results. 
The self-energy Σ then has to be obtained together with G in a self-consistent procedure. However, due to the severe 
computational cost of this procedure, it is usually not carried out (see, for example, [34]). Instead, it is common practice 
to construct the self-energy operator non-self-consistently using the self-consistent LDA results to determine 
quasiparticle corrections to the LDA energies, resulting in the quasiparticle band structure. The GW approximation has 
been applied to a wide range of metals, semiconductors and insulators, where it has been found to lead to striking 
improvements in the agreement of optical excitation spectra with the experiment (see, for example [32, 35, 36 and 37]). 
Recent studies also found that the GW charge density is close to the experiment for diamond structure semiconductors 
[38], and lifetimes of low-energy electrons in metals have been calculated [39]. 

Another disadvantage of the LDA is that the Hartree Coulomb potential includes interactions of each electron with 
itself, and the spurious term is not cancelled exactly by the LDA self-exchange energy, in contrast to the HF method 
(see A1.3), where the self-interaction is cancelled exactly. Perdew and Zunger proposed methods to evaluate the self-
interaction correction (SIC) for any energy density functional [40]. However, full SIC calculations for solids are 
extremely complicated (see, for example [41, 42 and 43]). As an alternative to the very expensive GW calculations, 
Pollmann et al have developed a pseudopotential built with self-interaction and relaxation corrections (SIRC) [44]. 

-10-

The pseudopotential is derived from an all-electron SIC-LDA atomic potential. The relaxation correction takes into 
account the relaxation of the electronic system upon the excitation of an electron [44]. The authors speculate that ‘…the 
ability of the SIRC potential to produce considerably better band structures than DFT-LDA may reflect an extra 
nonlocality in the SIRC pseudopotential, related to the nonlocality or orbital dependence in the SIC all-electron 
potential. In addition, it may mimic some of the energy and the non-local space dependence of the self-energy operator 
occurring in the GW approximation of the electronic many body problem’ [45]. 
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The LDA also fails for strongly correlated electronic systems. Examples of such systems are the late 3d transition-metal 
mono-oxides MnO, FeO, CoO, and NiO. Within the local spin density approximation (LSDA), the energy gaps 
calculated for MnO and NiO are too small [46] and, even worse, FeO and CoO are predicted to be metallic, whereas 
experimentally they have been found to be large-gap insulators. While the GW approximation yields an energy gap of 
NiO in reasonable agreement with experiment [47], the computational cost of this procedure is very high. The SIC-
LDA method reproduces quite well the strong localization of the d electrons in transition metal compounds, but the 
orbital energies obtained by SIC are usually in strong disagreement with experimental results (for transition metal 
oxides, for example, occupied d bands are approximately  Hartree below the oxygen valence band—a separation not 
seen in spectroscopic data: see, for example, the experimental results in [48]) [49]. An alternative solution to this 
problem is offered by the LDA+U method [49, 50], where LDA encompasses the LSDA. In the LDA+U technique, the 
electrons are divided into two subsystems which are treated separately: the strongly localized (d or f) electrons and the 
delocalized s and p electrons. The latter are treated by standard LDA. The on-site interactions among the strongly 
localized electrons on each atom, however, are taken into account by a term U Σi≠ϕninj, where ni are the occupation 
numbers of the strongly localized orbitals and U is the Coulomb interaction parameter (for details on the first-principles 
calculation of U, see [51]). At least for localized d or f states, the LDA+U technique may be viewed as an 
approximation to the GW approximation [49]. Band gaps, valence band widths and magnetic moments have been 
calculated with LDA+U that agree with experiment for a variety of transition metal compounds [49, 52], among other 
applications. 

B3.2.3.2 ALL-ELECTRON DFT METHODS 

(A) INTRODUCTION 

When the highest accuracy is sought for the electronic and geometric properties of crystals, all the electrons of the 
atoms in the crystal and the full Coulomb singularity of the nuclear potential must be accounted for. All-electron 
approaches, which do just that, generally cannot compete with pseudopotential techniques in speed and simplicity of 
algorithm. However, the latter suffer from severe drawbacks when it comes to the construction of the very 
pseudopotentials these methods depend upon: even for so-called ab initio potentials, the pseudopotentials are far from 
uniquely determined. Additionally, problems with transferability and the construction of potentials for such elements as 
the transition metals remain. All-electron techniques can deal with any element and there are no worries about 
transferability of the potential. However, the accuracy comes at a price: due to the Coulomb singularity of the potential 
at the nuclear positions, the wavefunctions are highly oscillatory close to the nucleus. For those all-electron methods 
that use wavefunctions to represent the electrons (a Green’s function method, for example, does not), this means that a 
simple plane wave basis set cannot be used for the expansion of the wavefunctions. To reach convergence of a plane 
wave exp(ik · r) expansion would require a prohibitive number of basis functions. Thus, specialized basis sets have 
been invented for all-electron calculations. 

-11-

We now discuss the most important theoretical methods developed thus far: the augmented plane wave (APW) and the 
Korringa–Kohn–Rostoker (KKR) methods, as well as the linear methods (linear APW (LAPW), the linear muffin-tin 
orbital [LMTO] and the projector-augmented wave [PAW]) methods. 

In the early all-electron techniques, the crystal was separated into spheres around the atoms, so-called ‘muffin-tin’ 
spheres, and the interstitial region in between. Inside the spheres, the potential was approximated as spherically 
symmetric, while in the interstitial region it was assumed to be constant. This shape approximation of the potential is 
reasonable for close-packed crystals such as hexagonally close-packed metals, where the spheres cover a large fraction 
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of the crystal volume. However, in less densely arranged crystals, such as diamond structure semiconductors (see figure 
(A1.3.4) the muffin-tin approximation leads to large errors. In the diamond and the related zincblende structures, only 
34% of the volume is covered by touching muffin-tin spheres (figure (B3.2.3)). For all of the all-electron methods, 
versions have been developed that are not restricted to shape approximations of the potential. These techniques are 
referred to as general, or full, potential methods. 

 

Figure B3.2.3. The muffin-tin spheres in the (110) plane of a zincblende crystal. The nuclei are surrounded by spheres 
of equal size, covering about 34% of the crystal volume. Unoccupied tetrahedral positions are indicated by crosses. The 
conventional unit cell is shown at the bottom; the crystal directions are noted. 

(B) THE AUGMENTED PLANE WAVE METHOD 

The APW technique was proposed by Slater in 1937 [53, 54]. It remains the most accurate of the band structure 
methods for the muffin-tin approximation of the potential. The wavefunction is expanded in basis functions ϕi(k + Gi, 
E, r), the APWs, each of which is identical to the plane wave exp(i(k + Gi)·r) in the interstitial region, where Gi are the 
reciprocal lattice vectors (see section A1.3.4). The plane waves are augmented, i.e. they are joined continuously at the 
surface of the spheres by solutions of the radial Schrödinger equation. This means that in the spherical harmonic 
expansion of a plane wave around the centre of a muffin-tin sphere, the respective Bessel function inside the sphere is 
replaced by a solution φli(r, E) of the radial Schrödinger equation for a given energy. The radial function matches the 
Bessel function, jl(|k + Gi|r), value at the sphere boundary and must be regular (non-singular) at the origin. 

-12-

With the basis functions ϕi(k + Gi, E, r), a variational solution is sought to the Kohn–Sham equation, equation (B3.2.4). 
Since the Hamiltonian matrix elements now depend nonlinearly upon the energy due to the energy-dependent basis 
functions, the resulting secular equation is solved by finding the roots of the determinant of the (E) – E (E) matrix. 
(The problem cannot be treated by the eigenvalue routines of linear algebra.) 

Numerically, the determination of the roots can be difficult because the determinant’s value may change by several 
orders of magnitude when the energy E is changed by only a few meV. Another difficulty can result at degenerate roots 
where the value of the determinant does not change sign. Additionally, the secular equation becomes singular when a 
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node of the radial solution falls at the muffin-tin sphere boundary (the so-called ‘asymptote problem’). 

Physically, the APW basis functions are problematic as they are not smooth at the sphere boundary, i.e., they have 
discontinuous slope. While in a fully converged solution of the secular equation, this discontinuity should disappear, 
alternative methods have been sought instead. Following a suggestion by Marcus [55] in 1967, the LAPW provided a 
way to avoid the above-mentioned drawbacks of the APW technique, as we now discuss. 

(C) THE LINEAR AUGMENTED PLANE WAVE METHOD 

The main disadvantage of the APW technique is that it leads to a nonlinear secular problem because the basis functions 
depend on the energy. A number of attempts have been made to construct linear versions of the APW approach by 
introducing energy-independent basis functions in different ways. In 1970, Koelling invented the alternative APW [56] 
and Bross the modified APW [57]. In 1975, Andersen constructed the LAPW [58] formalism, which today is the most 
popular APW-like band structure method. Further extensions of the linear methods appeared in the early 1990s: Singh 
developed the LAPW plus localized orbitals (LAPW+LO [59]) in 1991 and Krasovskii the extended LAPW (ELAPW 
[60]) in 1994. Recently the APW+LO technique has been implemented by Sjöstedt and Nordström [61] according to an 
idea by Singh. While the LAPW technique is generally used in combination with DFT approaches, it has also been 
applied based on the LDA+U [62] and HF theories [63]. 

The LAPW method, as suggested in 1975 [58, 64], avoids the problem of the energy dependence of the Hamiltonian 
matrix by introducing energy-independent APW basis functions. Here, too, the APWs are derived from plane waves by 
augmentation: Bessel functions jl(|k + Gi|r) in the Rayleigh decomposition inside the muffin-tin sphere are replaced by 
functions uli(r) derived from the spherical potential, which are independent of the energy of the state that is sought and 
that match the Bessel functions at the sphere radius in value and in slope (see figure (B3.2.4)). The plane wave part of 
the basis remains the same but the energy-independent APWs allow the energies and the wavefunctions to be 
determined by solving a standard generalized eigenvalue problem. 

-13-

 

Figure B3.2.4. A schematic illustration of an energy-independent augmented plane wave basis function used in the 
LAPW method. The black sine function represents the plane wave, the localized oscillations represent the 
augmentation of the function inside the atomic spheres used for the solution of the Schrödinger equation. The nuclei are 
represented by filled black circles. In the lower part of the picture, the crystal potential is sketched. 
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The KKR method uses multiple-scattering theory to solve the Kohn–Sham equations [74, 75]. Rather than calculate the 
wavefunction, modern incarnations calculate the Green’s function G. The Green’s function is the solution to the 
equation schematically given by (H – E)G(E) = –δ, where H is the Hamiltonian, E the single-electron energy and δ the 
delta function δ(r – r'). The properties of the system, such as the electron density, the density of states and the total 
energy can be derived from the Green’s function [73]. The crystal is represented as a sum of non-overlapping 
potentials; in the modern version, there are no shape approximations, i.e. the potentials are space-filling [76]. Within 
the multiple-scattering formalism, the wavefunction is built up by taking into account the scattering and rescattering of 
a free-electron wavefunction by scatterers. The scatterers are (generally) the atoms of the crystal and the single-
scattering properties (the properties of the isolated scatterer) are derived from the effective, singular potentials of the 
atoms (given in equation (B3.2.2)). The Green’s matrix is then constructed from the knowledge of the scattering 
properties of the single scatterers and the analytically known Green’s function of the free electron. The full-potential 
KKR method has been shown to have the same level of accuracy as the full-potential LAPW method [73]. The Green’s 
function formulation offers the advantage of easy inclusion of defects in the bulk or clean surfaces. Such calculations 
start with the Green’s function of the periodic crystal and include the perturbation through a Dyson equation [77]. 
Yussouff states that the difference in speeds between the linear methods and his ‘fast’ KKR technique is at most a 
factor of ten, in favour of the former [78]. While the KKR technique has an accuracy comparable to the APW method, 
it has the disadvantage of not being a linear approach, limiting speed and simplicity. 

(E) THE LINEAR MUFFIN-TIN ORBITAL METHOD 

In linearizing the APW problem as it is done in the LAPW method, the variational freedom of the APW basis set is 
reduced. The reason is that the wavefunction inside the spheres is rigidly coupled to its plane wave expansion in the 
interstitial region [65]. This means that the method cannot yield an accurate wavefunction even if the eigenvalue is 
within a few eV of the chosen energy parameters [66]. Flexibility is defined in this context as the possibility to change 
the wavefunction inside the spheres independently from the wavefunction in the interstitial region. Flexibility can be 
achieved in the linear band structure methods by adding basis functions localized inside the spheres whose value and 
slope vanish at the sphere boundary [54, 67, 68]. A ‘flexible’ basis set extending the LAPW with localized functions is 
preferable to the one used in the pure LAPW technique. Flexible linear methods are the MAPW, the LAPW+LO and 
the ELAPW, the latter of which provides a necessary degree of flexibility with a minimal number of basis functions 
[65]. 

The additional functions increase the matrix dimension slightly and thus the computational effort. However, the 
increased flexibility of the basis set makes possible a number of extensions of the LAPW method. One is a k ⋅ p 
formulation of the ELAPW method [68], which would lead to large errors in the regular LAPW due to its lesser 
flexibility. The augmented Fourier components (AFC) technique [69] for treating a general potential is based on this. 
The AFC method is an alternative to the full-potential LAPW (FLAPW) method [70, 71]. (Recently progress has been 
made in increasing the computational efficiency of the FLAPW method [72].) The AFC method does not have the same 
demanding convergence criteria as the FLAPW method but yields physically equivalent results [69]. 

The general potential LAPW techniques are generally acknowledged to represent the state of the art with respect to 
accuracy in condensed matter electronic-structure calculations (see, for example, [62, 73]). These methods can provide 
the best possible answer within DFT with regard to energies and wavefunctions.  

-14-

(D) THE KORRINGA–KOHN–ROSTOKER TECHNIQUE 
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The LMTO method [58, 79] can be considered to be the linear version of the KKR technique. According to official 
LMTO historians, the method has now reached its ‘third generation’ [79]: the first starting with Andersen in 1975 [58], 
the second commonly known as TB-LMTO. In the LMTO approach, the wavefunction is expanded in a basis of so-
called muffin-tin orbitals. These orbitals are adapted to the potential by constructing them from solutions of the radial 
Schrödinger equation so as to form a minimal basis set. Interstitial properties are represented by Hankel functions, 
which means that, in contrast to the LAPW technique, the orbitals are localized in real space. The small basis set makes 
the method fast computationally, yet at the same time it restricts the accuracy. The localization of the basis functions 
diminishes the quality of the description of the wavefunction in the interstitial region. 

In the commonly used atomic sphere approximation (ASA) [79], the density and the potential of the crystal are 
approximated as spherically symmetric within overlapping muffin-tin spheres. Additionally, all integrals, such as for 
the Coulomb potential, are performed only over the spheres. The limits on the accuracy of the method imposed by the 
ASA can be overcome with the full-potential version of the LMTO (FP-LMTO) which gives highly accurate total 
energies [79, 80]. It was found that the FP-LMTO is ‘at least as accurate as, and much faster than,’ pseudopotential 
plane wave calculations in the determination of structural and dynamic properties of silicon [80]. The FP-LMTO is 
considerably slower than LMTO-ASA, however, and it has been found that ASA calculations can yield accurate results 
if the full expansion, rather than only the spherical part, of the charge is used in what is called a full-charge (rather than 
a full-potential) method and the integrals are performed exactly [73, 79]. 

The LMTO method is the fastest among the all-electron methods mentioned here due to the small basis size. The 
accuracy of the general potential technique can be high, but LAPW results remain the ‘gold standard’.  
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The projector augmented-wave (PAW) DFT method was invented by Blöchl to generalize both the pseudopotential and 
the LAPW DFT techniques [81]. PAW, however, provides all-electron one-particle wavefunctions not accessible with 
the pseudopotential approach. The central idea of the PAW is to express the all-electron quantities in terms of a pseudo-
wavefunction (easily expanded in plane waves) term that describes interstitial contributions well, and one-centre 
corrections expanded in terms of atom-centred functions, that allow for the recovery of the all-electron quantities. The 
LAPW method is a special case of the PAW method and the pseudopotential formalism is obtained by an 
approximation. Comparisons of the PAW method to other all-electron methods show an accuracy similar to the 
FLAPW results and an efficiency comparable to plane wave pseudopotential calculations [82, 83]. PAW is also 
formulated to carry out DFT dynamics, where the forces on nuclei and wavefunctions are calculated from the PAW 
wavefunctions. (Another all-electron DFT molecular dynamics technique using a mixed-basis approach is applied in 
[84].) 

PAW is a recent addition to the all-electron electronic structure methods whose accuracy appears to be similar to that of 
the general potential LAPW approach. The implementation of the molecular dynamics formalism enables easy 
structure optimization in this method. 

(G) ILLUSTRATIVE EXAMPLES OF THE ELECTRONIC AND OPTICAL PROPERTIES OF MODERN MATERIALS 

As an indication of the types of information gleaned from all-electron methods, we focus on one recent approach, the 
ELAPW method. It has been used to determine the band structure and optical properties over a wide energy range for a 
variety of crystal structures and chemical compositions ranging from elementary metals [60] to complex oxides [85], 
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(F) THE PROJECTOR AUGMENTED WAVE TECHNIQUE 
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layered dichalcogenides [86, 87] and nanoporous semiconductors [88]. The k ⋅ p formulation has also enabled 
calculation of the complex band structure of the Al (100) surface [89]. 

As an illustration of the accuracy of the AFC ELAPW-k ⋅ p method, we present the dielectric function of GaAs. The 
dielectric function is a good gauge of the quality of a method, since not only do the energies enter the calculation, but 
also the wavefunctions via the matrix elements of the momentum operator –i . For the calculation of the dielectric 
function (equation (A1.3.87)) of GaAs, the conduction bands were rigidly shifted so that the highest peak agreed in 
both experiment and theory, a shift of 0.75 eV. The imaginary part of the dielectric function is shown in figure B3.2.5. 
Comparing the energy differences between the three peaks, we find that they agree to within 2 meV. For a wider 
comparison, we plot the results of two more experiments (which only have measured the two peaks at lower photon 
energy) and several all-electron calculations of the dielectric function of GaAs in figure B3.2.6. The FLAPW results 
agree almost exactly with the AFC ELAPW values. The discrepancies compared to the experimental results found for 
the other methods are considerably larger than for the general potential LAPW results, particularly for E1. 
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Figure B3.2.5. The imaginary part of the dielectric function of GaAs, according to the AFC ELAPW-k⋅p method (solid 
curve) [195] and the experiment (dashed curve) [196]. To correct for the band gap underestimated by the local density 
approximation, the conduction bands have been shifted so that the E2 peaks agree in theory and experiment. 
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Figure B3.2.6. The energies of the E1 and E’1 peaks relative to the E2 peak of the imaginary part of the dielectric 
function of GaAs, calculated by self-consistent DFT all-electron methods. These energies do not depend on the gap 
size. The theoretical methods are noted, as are experimental results obtained by ellipsometry (see chapter B1.26). The 
lower (upper) histogram gives the energy of peak E1 (E’1) relative to E2. LCGO designates a linear-combination-of-
Gaussian-orbitals method, OLCAO an orthogonalized linear-combination-of-atomic-orbitals approach. Sources: (1) 
[195], (2) [196], (3) [197], (4) [198], (5) [199], (6) [200], (7) [199], (8) [201], (9) [202]. 
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A recent study of a class of nanoporous materials, the cetineites [88], offers further illustration of the possibilities 
offered by the modern band structure methods. The crystal is constructed of tubes of 0.7 nm diameter arranged in a 
two-dimensional hexagonal structure with ‘flattened’ SbSe3 pyramids arranged between the tubes (see figure B3.2.7). 
Cetineites are of potential technological interest because, singularly among nanoporous materials, they are 
semiconductors rather than insulators. In figure B3.2.8, we show the comparison of the predicted density of states to the 
ultraviolet photoemission spectrum (PES, see chapter B1.1). The DOS can explain the two main structures in the PES 
at about –3 and –12 eV. Their relative intensities agree with those suggested by the DOS curve. Three structures in the 
DOS at –1, –6 and –9 eV are not resolved in the PES. This may be due to the selection rules of the photoemission 
process, not accounted for in the theory, or perhaps due to incomplete angle integration experimentally. The 
experimental results confirm, in particular, that the number of states is very high close to the valence band maximum. 
An orbital analysis shows that these states are derived mainly from the p states of the O and Se constituents of the 
crystal, with the chalcogen dominating near the top of the valence band. Electrons in the Se p states are thus most easily 
excited into the conduction band. This, together with their high DOS, makes the Se p states located on the pyramids the 
prime candidates for the initial states of the photoconductivity observed in the cetineites. 
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Figure B3.2.7. A perspective view of the cetineite (Na;Se). The height of the figure is three lattice constants c. The 
shaded tube is included only as a guide to the eye. (From [88].) 
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Figure B3.2.8. Comparison of the photoemission spectrum for the cetineite (Na;Se) and the density of states calculated 
by the AFC ELAPW-k⋅p method [88]. 
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DFT calculations such as the ones mentioned in chapter A1.3 and section B3.2.3.2 become computationally very 
expensive when the unit cell of the interesting system becomes large and complex, with certain parts of the 
computational algorithm typically scaling cubically with system size. A recent objective for treating large systems is to 
have the computational burden scale no more than linearly with system size. Methods achieving this are called linear-
scaling or O(N) (order N) methods, most of which are based on the Kohn–Sham equation (see equation (B3.2.4)), 
aiming to calculate single-electron wavefunctions, the Kohn–Sham orbitals. These methods tend to be faster than the 
conventional Kohn–Sham approach above a few hundred atoms [20, 91, 92 and 93]. Another class of methods is based 
directly on the DFT of Hohenberg and Kohn [24]. With these techniques one seeks to determine directly the density 
that minimizes the total energy; they are often referred to as orbital-free methods [94, 95, 96 and 97]. Such orbital-free 
calculations do not have the bottlenecks present in orbital-based O(N) DFT calculations, such as the need to localize 
orbitals to achieve linear scaling, orbital orthonormalization, or Brillouin zone sampling. Without such bottlenecks, the 
calculations become very inexpensive. 

Equation (B3.2.3) lists the terms comprising the calculation of the total energy. The term due to the external potential 
and the Hartree term describing the Coulomb repulsion energy among the electrons already explicitly depend on the 
density instead of on orbitals. More difficult to evaluate is G[ρ] = Ts[ρ] + Exc[ρ], a functional which is not known 
exactly. However, over the years a number of high-quality exchange–correlation functionals have been developed for 
all kinds of systems. Only quite recently have more accurate kinetic energy density functionals (KEDFs) become 
available [97, 98 and 99] that afford linear-scaling computations. 

One current limitation of orbital-free DFT is that since only the total density is calculated, there is no way to identify 
contributions from electronic states of a certain angular momentum character l. This identification is exploited in non-

As another example of properties extracted from all-electron methods, figure B3.2.9 shows the results of a PAW 
simulation of benzene molecules on a graphite surface. The study aimed to show the extent to which the electronic 
structure of the molecule is modified by interaction with the surface, and why the images do not reflect the molecular 
structure. The PAW method was used to determine the structure of the molecule at the surface, the strength of the 
interaction between the surface and the molecules, and to predict and explain scanning tunnelling microscope (STM) 
images of the molecule on the surface [90] (the STM is described in section B1.19). 

 

Figure B3.2.9. A benzene molecule on a graphite surface [90]. The geometry and the charge density (indicated by the 
surfaces of constant density) have been obtained using the PAW method. (Figure by Professor P E Blöchl.) 

-19-

B3.2.3.3 LINEAR-SCALING ELECTRONIC STRUCTURE METHODS 
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local pseudopotentials so that electrons of different l character ‘see’ different potentials, considerably improving the 
quality of these pseudopotentials. The orbital-free methods thus are limited to local pseudopotentials, connecting the 
quality of their results to the quality of the available local potentials. Good local pseudopotentials are available for the 
alkali metals, the alkaline earth metals and aluminium [100, 101] and methods exist for obtaining them for other atoms 
(see section VI.2 of [97]). 

The orbital-free method has been used for molecular-dynamics studies of the formation of the self-interstitial defect in 
Al [102], pressure-induced glass-to-crystal transitions in sodium [103] and ion–electron correlations in liquid metals 
[101]. Calculations of densities for various Al surfaces have shown excellent agreement between the charge densities as 
calculated by Kohn–Sham DFT and an orbital-free method using a KEDF with a density-dependent response kernel 
[99]. The method was used recently to examine the metal–insulator transition in a two-dimensional array of metal 
quantum dots [104], where the theory showed that minute overlap of the nanoparticle’s wavefunctions is enough to 
transform the array from an insulator to a metal. As an example of the ease with which large simulations can be 
performed, figure B3.2.10 shows a plot of the charge density from an orbital-free calculation of a vacancy among 255 
Al atoms [98], carried out on a workstation. 
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Figure B3.2.10. Contour plot of the electron density obtained by an orbital-free Hohenberg–Kohn technique [98]. The 
figure shows a vacancy in bulk aluminium in a 256-site cell containing 255 Al atoms and one empty site, the vacancy. 
Dark areas represent low electron density and light areas represent high electron density. A Kohn–Sham calculation for 
a cell of this size would be prohibitively expensive. Calculations on smaller cell sizes using both techniques yielded 
densities that were practically identical. 

B3.2.3.4 THE HARTREE–FOCK METHOD IN CRYSTALS 

The HF method (discussed in section A1.3.1.2) is an alternative to DFT approaches. It does not include electron 
correlation effects, i.e. non-classical electron–electron interactions beyond the Coulomb and exchange interactions. The 
neglect of these terms means that the Coulomb interaction is unscreened, and hence the electron repulsion energy is too 
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QMC techniques provide highly accurate calculations of many-electron systems. In variational QMC (VMC) [112, 113 
and 114], the total energy of the many-electron system is calculated as the expectation value of the Hamiltonian. 
Parameters in a trial wavefunction are optimized so as to find the lowest-energy state (modern methods instead 
minimize the variance of the local energy  [115]). A Monte Carlo (MC) method is used to perform the multi-
dimensional integrations necessary to determine the expectation value, 

 

where ψ is the trial wavefunction and  is a normalized probability distribution. The integration is 
performed by summing up the local energy at points, corresponding to electron configurations, given by the probability 
distribution. A random walk algorithm, such as the Metropolis algorithm [116], is used to sample those regions of 
configuration space more heavily where the probability density is high. The standard Slater–Jastrow trial wavefunction 
is the product of a Slater determinant of single-electron orbitals and a Jastrow factor, a function which includes the 
description of two-electron correlation. As an example, the trial wavefunction used for a silicon crystal contained 32 
variational parameters whose optimization required the calculation of the local energy for 10 000–20 000 statistically 
independent electron configurations [117]. In contrast to the DMC technique described below, the accuracy of a VMC 
calculation depends on the quality of the many-particle wavefunction used [114]. In figure B3.2.11 we show the 
determination of the lattice constant of GaAs by VMC by minimization of the total energy [118]. This figure illustrates 
the roughness of the potential energy surface due to statistical errors, which poses a challenge then for the calculation 
of forces with QMC. 

large, overestimating ionic character, which leads to band gaps that are too large by a factor of two or more and valence 
band widths that are too wide by 30–40% [63]. However, the HF results can be used as a well defined starting point for 
the inclusion of many-particle corrections such as the GW approximation [31, 32] or, with considerably less 
computational effort, the results can be improved considerably by accounting for the Coulomb hole and screening the 
exchange interaction using the dielectric function [63, 105]. 

Ab initio HF programs for crystals have been developed [106, 107] and have been applied to a wide variety of bulk and 
surface systems [108, 109]. As an example, a periodic HF calculation using pseudopotentials and an LCAO basis 
predicted binding energies, lattice parameters, bulk moduli and central-zone phonon frequencies of 17 III–V and IV–IV 
semiconductors. The authors find that ‘…[o]n the whole, the HF LCAO data appear no worse than other ab initio 
results obtained with DF-based Hamiltonians’ [110]. They suggest that the largest part of the errors with respect to 
experiment is due to correlation effects and to a lesser extent due to the imperfections of the pseudopotentials [110]. 
More recently, the electronic and magnetic properties of transition metal oxides and halides such as perovskites, which 
had been a problem earlier, have been investigated with spin-unrestricted HF [111]. In general, the periodic HF method 
is best suited for the study of highly ionic, large band gap crystals because such systems are the least sensitive to the 
lack of electron correlation. 
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B3.2.3.5 QUANTUM MONTE CARLO 
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Figure B3.2.11. Total energy versus lattice constant of gallium arsenide from a VMC calculation including 256 
valence electrons [118]; the curve is a quadratic fit. The error bars reflect the uncertainties of individual values. The 
experimental lattice constant is 10.68 au, the QMC result is 10.69 (± 0.1) au (Figure by Professor W Schattke). 
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In the diffusion QMC (DMC) method [114, 119], the evolution of a trial wavefunction (typically wavefunctions of the 
Slater–Jastrow type, for example, obtained by VMC) proceeds in imaginary time, τ = it, according to the time-
dependent Schrödinger equation, which then becomes a diffusion equation. All components of the wavefunction except 
for the ground-state wavefunction are damped by the time evolution operator exp(-iHt) = exp(-Hτ). The DMC was 
developed as a simplification of the Green’s function MC technique [113]. A particularly well known use of the 
Green’s function MC technique was the determination by Ceperley and Alder of the energy of the uniform electron gas 
as a function of its density [120]. This E(ρ) was subsequently parametrized by Perdew and Zunger for the commonly 
used LDA exchange–correlation potential [40]. Usually two approximations are made to make DMC calculations 
tractable: the fixed-node approximation, in which the nodes, the places where the trial function changes sign, are kept 
fixed for the solution to enforce the fermion symmetry of the wavefunction and the so-called short-time approximation, 
whose effect can be made very small [114]. Excited states have been calculated by replacing an orbital in the Slater 
determinant of the trial wavefunction by a conduction-band orbital [121]. 

Recently, a method has been proposed to overcome the problems associated with calculating forces in both VMC and 
DMC [122]. It has been suggested that the use of QMC in the near future to tackle the energetics of systems as 
challenging as liquid binary iron alloys is not unthinkable [123]. 

B3.2.3.6 SUMMARY AND COMPARISONS 

As we have outlined, a very wide variety of methods are available to calculate the electronic structure of solids. 
Empirical TB methods (such as discussed in section B3.2.2) are the least expensive, affording the calculation of unit 
cells with large numbers (e.g. 103) of atoms, or to provide cheap input to subsequent methods, at the price of 
quantitative accuracy. DFT methods (section A1.3.5.4 and section B3.2.3.3), on the other hand, are responsible for 
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B3.2.4.1 INTRODUCTION 

First-principles models of solid surfaces and adsorption and reaction of atoms and molecules on those surfaces range 
from ab initio quantum chemistry (HF; configuration interaction (CI), perturbation theory (PT), etc: for details see 
chapter B3.1) on small, finite clusters of atoms to HF or DFT on two-dimensionally infinite slabs. In between these 
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many of the impressive results obtained in computational materials theory in recent years. The tradeoff for DFT is the 
opposite: its expense, except in the not-yet-general linear scaling methods, limits it typically to systems with at most a 
few hundred atoms. Once the O(N) DFT methods become more general (for example, when orbital-free DFT can treat 
non-metallic systems), then the DFT method will be able routinely to treat systems as large as those treated now with 
TB. 

The diversity of approaches based on HF (section B3.2.3.4) is small at present compared to the diversity found for 
DFT. For solids, HF appears to yield results inferior to DFT due to the neglect of electron correlation, but being a 
genuine many-particle theory it offers the possibility for consistent corrections, in contrast to DFT. Finally, the QMC 
techniques (section B3.2.3.4) hold promise for genuine many-particle calculations, yet they are still far from able to 
offer the same quantities for the same range of materials and geometries as the theories mentioned before. With this 
wide range of methods now introduced, we will look at their application to chemisorption on solid surfaces. 

 
B3.2.4 QUANTUM STRUCTURAL METHODS FOR SOLID SURFACES 
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two extremes lie embedded cluster models, which recognize and attempt to correct the drastic approximation made by 
using a finite cluster to describe, for example, a metallic conductor whose electronic structure is inherently delocalized 
or an ionic crystal with long-range Coulomb interactions. Upon chemisorption, the binding of an atom or a molecule to 
a surface involves significant sharing of electrons in the bond between the adsorbate and surface atoms and this 
breaking of the crystal symmetry will induce localization of the electrons. The attractive feature of the embedded 
cluster idea is that it preserves the strengths of the cluster approach, namely it allows one to describe the very local 
process of chemisorption to a high degree of accuracy by, for example, quantum chemical methods, while at the same 
time attempting to account for the presence of the rest of the surface and bulk. Surface reconstruction and molecular 
adsorption have been studied on a variety of surfaces, including insulators, semiconductors and metals. To illustrate 
these methods, we will focus on those used to examine adsorption of atoms and molecules on transition metal surfaces. 
This is not a comprehensive review of each approach; rather, we provide selected examples that demonstrate the range 
of techniques and applications, and some of the lessons learned. 

B3.2.4.2 THE FINITE CLUSTER MODEL 

The most straightforward molecular quantum mechanical approach is to treat adsorption on a small, finite cluster of 
transition metal atoms, ranging from as small as four atoms up to ~40 atoms. Though all-electron calculations can be 
performed, typically the core electrons of transition metal atoms are replaced by an effective core potential (ECP, the 
quantum chemistry version of a pseudopotential that accounts approximately for the core–valence electron interaction), 
while the valence electrons of each metal atom are treated explicitly within a HF, CI, PT, or DFT formalism. Typically, 
a few atoms in the chemisorption region contain the valence (or all) electrons explicitly, while surrounding atoms tend 
to be described more crudely with, for example, a one-electron ECP representation, model pseudopotentials or, in the 
case of ionic crystals, a finite array of point charges. Generally, the structure of the cluster is chosen to be a fixed 
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fragment of the bulk. Examples of this type of approach include the early work of Upton and Goddard [124], who 
examined adsorption of electronegative and electropositive atoms on a Ni20 cluster designed to mimic various low-
index faces of Ni. In this model, only the 4s electrons on each Ni atom were treated explicitly, while the 3d electrons 
were subsumed into an ECP. They made predictions concerning preferred binding sites, geometries, vibrational 
frequencies and binding energies. Bagus et al [125] published an important comparison study showing that it is more 
accurate to treat metal atoms directly interacting with an adsorbate at an all-electron level, while it is sufficient to 
describe the surrounding metal atoms with ECPs. Panas et al [126] proposed the idea that a cluster should be ‘bond-
prepared’, namely that one should study an electronic state of the finite cluster that has enough singly-occupied orbitals 
of the correct symmetry to interact with the incoming admolecule to form the necessary covalent bonds between the 
adsorbate and the metal. In one of the first studies of a metal surface reaction, Panas et al [127] examined dissociative 
chemisorption pathways at the multi-reference CI level for O2 on a Ni13 cluster, generally using ECPs for all but the 4s 
electrons. Salahub and co-workers [128] used DFT-LDA with a Gaussian basis to examine chemisorption of C, O, H, 
CO and HCOO on Ni clusters containing up to 16 atoms meant to represent various low-index faces of Ni. Gradient 
corrections to the LDA scheme improved dramatically the binding energies for hydrogen bound to small Ni clusters, 
when compared to experimental results for Ni(111) and Ni(100) [129]. Multiple adsorbates were also studied by DFT-
LDA: for example, in the case of hydrogen on Pd clusters modelling Pd(110) [130]. Diffusion barriers were also 
calculated by DFT-LDA for clusters containing up to 13 metal atoms of Pd, Rh, Sn, and Zn [131]. Other examples 
include HF calculations of K adsorbed on Cu clusters [132], HF and Møller–Plesset second-order PT (MP2) 
calculations of acetylene on Cu and Pd clusters [133], modified coupled pair functional (CPF) calculations for CO on 
Cu clusters [134], averaged CPF calculations of hydrogen adsorption on relaxed Cu clusters [135], HF, CASSCF 
(complete active space self-consistent field) and multireference CI and PT calculations for CO [136] and O [137] on Pt 
clusters, and spin-polarized DFT of c-CH2N2 on Pd and Cu tetramers [138] and of K and CO on Pd8,14 [139]. 

-24-

The advantage of the finite-cluster model is that one can systematically include high levels of electron correlation; this 
is to be balanced against the lack of a proper band structure, the presence of edge effects and the fact that it is generally 
limited to modelling low coverages. Next we outline current strategies for ameliorating some of these difficulties. 

B3.2.4.3 FINITE-CLUSTER MODEL IN CONTACT WITH A CLASSICAL BACKGROUND 

Several modifications of the finite-cluster model meant to account for the background Fermi sea of electrons and to 
compensate for the lack of a proper band structure have been developed. They rely on simple approximations of the 
surface/bulk, usually involving classical electrostatic interactions and usually applied to ionic crystals (see, for 
example, [140]). Of these, the model invented by Nakatsuji is the primary one that has considered adsorption on metal 
surfaces [141]. The so-called ‘dipped adcluster model’ [142] considers a small cluster plus an adsorbate as the 
‘adcluster’ that is ‘dipped’ onto the Fermi sea of electrons of the bulk metal. A normal HF calculation on the small 
system is performed, in which electrons are added to or removed from the cluster in each calculation. By comparing the 
variation in the total energy with respect to the fractional electron transfer, dE/dn, to the work function of the metal, μ, 
the extent of electron transfer between the adcluster and the bulk metal can be established. Thus, charges on a small 
cluster are optimized and an image charge correction is also accounted for. In certain cases, integral charges are 
transferred between the cluster and the ‘surroundings’; then electron correlation calculations, for example CI, can be 
carried out. This is a purely classical electrostatic approach to accounting for the background electrons in an implicit, 
rather than explicit, manner. Nakatsuji has used this to study adsorption of ionic adsorbates on metals, and finds that 
one can describe the polarization of the metal reasonably well. We have worked briefly with this approach [143], but 
found that there is a problem with extending the method beyond two-dimensional clusters, because of an ambiguity of 
where to place the image plane. Indeed, Nakatsuji’s examples are always small one- or two-dimensional clusters. It is 
also likely that the wavefunction for such small clusters (typically ≤4 metal atoms) would not adequately represent a 

Page 23 of 40B3.2 Quantum Structural Methods for the Solid State and Surfaces

8/3/2005file://C:\Documents and Settings\lhebditc\Desktop\EAC-116.htm



Encyclopedia of Chemical Physics and Physical Chemistry 
Copyright 2001 by Institute of Physics Publishing 

  

 

true metal surface wavefunction. 

A simple, implicit means of describing the metallic band structure [144] was introduced by Rösch, using a Gaussian 
broadening of the cluster energy levels in order to determine a cluster Fermi level within DFT, originally by the Xα 
method (a simplified version of DFT-LDA; see section A1.3.3.3). Recent applications of this method have utilized 
more accurate forms of gradient-corrected spin-polarized DFT to look at adsorption of, for example, acetylene on 
Ni14,20 clusters [145], CO adsorption on Ni, Pd and Pt clusters of eight or nine atoms [146] and NO adsorption on Ru 
[147]. 

B3.2.4.4 SLAB CALCULATIONS 

The other extreme of modelling chemisorption is to use a slab described by DFT or HF. The slab is typically taken to 
be periodic in the directions parallel to the surface and contains a few atomic layers in the direction normal to the 
surface. For the adatoms not to influence each other, unless that is intended, the unit cell needs to be sufficiently large, 
parallel to the surface. For computational reasons, it is advantageous in some methods, namely plane wave techniques, 
to have periodicity in three dimensions. In the supercell geometry, this periodicity is gained by considering slabs which 
are periodic in the direction perpendicular to the surface but separated from each other by vacuum regions. The vacuum 
region has to be thick enough so that there is no influence between the surfaces facing each other (the same is true for 
the slab thickness). For a schematic description of several simulation model geometries, see figure B3.2.12. 
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Figure B3.2.12. Schematic illustration of geometries used in the simulation of the chemisorption of a diatomic 
molecule on a surface (the third dimension is suppressed). The molecule is shown on a surface simulated by (A) a 
semi-infinite crystal, (B) a slab and an embedding region, (C) a slab with two-dimensional periodicity, (D) a slab in a 
supercell geometry and (E) a cluster.  

Freeman and co-workers developed the FLAPW method (see B3.2.2) during the early 1980s [70, 148]. This was a 
major advance, because the conventional ‘muffin-tin’ potential was eliminated from their calculation allowing general-
shape potentials to be evaluated instead. Freeman’s group first developed this for thin films and then for bulk metals. 
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As mentioned before, the LAPW basis, along with the elimination of any shape approximations in the potential, allows 
for highly accurate calculations on transition metal surfaces, within the DFT-LDA and the generalized gradient 
approximation, GGA (see section A1.3.3.3). For the ‘stand-alone’ slab geometry, figure B3.2.12(C) the LAPW basis 
functions decay exponentially into the vacuum. The numerous interfacial systems examined by Freeman’s group 
include, for example, CO with K or S coadsorption on Ni(001) [149], adsorption of sulfur alone on Ni(001) [150], Fe 
monolayers on Ni(111) [151], Ag monolayers on MgO(001) [152], Au-capped Fe monolayers on MgO(001) [153], NO 
adsorption on Rh, Pd and Pt [154], and Li on Ru(001) [155]. Typical properties predicted are the equilibrium positions, 
magnetic moments, charge densities and surface densities of states. 

More recently, other groups—primarily in Europe—have begun doing pseudopotential plane wave (often gradient-
corrected) DFT supercell slab calculations (figure B3.2.12(D)) for chemisorption on metals. The groups of Nørskov 
[156], Scheffler [157], Baerends [158, 159] and Hafner and Kresse [160, 161] have been the most active. Adsorbate–
metal surface systems examined include: alkalis and N2 on Ru [156], NO on Pd [156], H2 on Al [156], Cu [156, 158], 
Pd [157, 158] and sulfur-covered Pd [157], CO oxidation on Ru [157], CO on Ni, Pd and Pt [158], O on Pt [160], and 
H2 on Rh, Pd and Ag [161]. 

-26-

An interesting study by te Velde and Baerends [159] compared slab- and cluster-DFT results for CO absorption on Cu
(100). They found large oscillations in the chemisorption binding energy of CO to finite copper clusters as a function of 
cluster size. This suggests that the finite-cluster model (figure B3.2.12(E)) is likely to be inadequate, at least for 
modelling metal surfaces. By contrast, the slab calculations converge quickly with the number of Cu layers for the CO 
heat of adsorption and CO–CO distances. 

The supercell plane wave DFT approach is periodic in three dimensions, which has some disadvantages: (i) thick 
vacuum layers are required so the slab does not interact with its images, (ii) for a tractably sized unit cell, only high 
adsorbate coverages are modelled readily and (iii) one is limited in accuracy by the form of the exchange–correlation 
functional chosen. In particular, while DFT, especially using gradient-corrected forms of the exchange–correlation 
functional (GGA), has proven to be remarkably reliable in many instances, there are a number of examples for 
chemisorption in which the commonly used GGAs have been shown to fail dramatically (errors in binding energies of 1 
eV or greater) [162, 163]. This naturally motivates the next set of approaches, namely the embedded cluster strategy. 

B3.2.4.5 EMBEDDED-CLUSTER SCHEMES: CLUSTER IN CLUSTER 

Whitten and co-workers developed a metal cluster embedding scheme appropriate for CI calculations during the 1980s 
[164]. In essence, the method consists of: (i) solving for a HF minimum basis set (one 4s orbital/atom) description of a 
large cluster (e.g.,~30–90 atoms); (ii) localizing the orbitals via exchange energy maximization with atomic basis 
functions on the periphery; (iii) using these localized orbitals to set up effective Coulomb and exchange operators for 
the electrons within the cluster to be embedded; (iv) improving the basis set on the atoms comprising the embedded 
cluster and (v) performing a small CI calculation (O(103) configurations) within orbitals localized on the embedded 
cluster. This strategy provides an approximate way of accounting for nearby electrons outside the embedded cluster 
itself. Whitten and co-workers have applied it to a variety of adsorbates (H, N, O, C—containing small molecules) on, 
primarily, Ni surfaces. Duarte and Salahub recently reported a DFT-cluster-in-DFT-cluster variant of Whitten’s 
embedding, with a couple of twists on the original approach (for example, fractional orbital occupancies and charges, 
and an extra buffer region) [165]. Earlier, Sellers developed a related scheme for embedding a MP2 cluster within 
another cluster, where the background was modelled with screened ECPs [166]. Also, Ravenek and Geurts [167] and 
Fukunishi and Nakatsuji [168] extended the Green’s matrix method of Pisani [169] (who developed it mainly for ionic 
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One of the first cluster embedding schemes was put forth by Ellis and co-workers [172]. They were interested in 
studying transition metal impurities in NiAl alloys, so they considered a TMAlxNiy cluster embedded in a periodic self-
consistent crystal field appropriate for bulk β′-NiAl. The field was calculated via Xα calculations, as was the cluster 
itself. The idea was to provide a relatively inexpensive alternative to supercell DFT calculations. 

Perhaps the most sophisticated embedding scheme for describing metal surfaces to date is the LDA-based self-
consistent Green’s function method for semi-infinite crystals. Inglesfield, Benesh, and co-workers embed the near-
surface layers using an embedding potential constructed from the bulk Green’s function within an all-electron 
approach, using an LAPW basis [173]. Scheffler and co-workers developed a similar approach using a Gaussian basis 
for the valence electrons and pseudopotentials [174]. The formulation of the latter method is somewhat different from 
Inglesfield’s and Benesh’s, in that a reference system is chosen for which the Green’s function and density are known 
(typically the bulk metal), and a Δ(Green’s function) is solved for in order to get a Δ(embedding potential) and hence a 
Δ(density). This allows one to solve for the embedding potential locally in a small region around the adsorbate. These 
methods allow for an economical yet accurate calculation of the embedding density, which yields a trustworthy 
description of charge transfer and other equilibrium properties, though subject to the accuracy limitations inherent in 
DFT-LDA. 

In the late 1980s, Feibelman developed his Green’s function scattering method using LDA with pseudopotentials to 
describe adsorption on two-dimensionally infinite metal slabs [175], based on earlier work by Williams et al [176]. The 
physical basis for the technique is that the adsorbate may be considered a defect off which the Bloch waves of the 
perfect substrate scatter. The interaction region is short-range because of screening by the electron gas of the metal. 
Feibelman has used this technique to study, for example, the chemisorption of an H2 molecule on Rh(001) [177], S 
adatoms on Al(331) [178] and Ag adatoms on Pt(111) [179]. Charge densities, relative energies for various adsites and 
diffusion barriers (the latter in good agreement with experiment) were the typical quantities predicted. 

Krüger and Rösch implemented within DFT the Green’s matrix approach of Pisani within an approximate periodic slab 

crystals) to again embed a cluster within a cluster by introducing a semiorthogonal basis and renormalizing the charge 
on the cluster. It was implemented within the Xα method in the former case [167], and by broadening each discrete 
energy level to mimic the bulk band structure within HF theory for the cluster in the latter case [168]. 

Pisani [169] has used the density of states from periodic HF (see B3.2.2.4) slab calculations to describe the host in 
which the cluster is embedded, where the applications have been primarily to ionic crystals such as LiF. The original 
calculation to derive the external Coulomb and exchange fields is usually done on a finite cluster and at a low level of 
ab initio theory (typically minimum basis set HF, one electron only per atom treated explicitly). 

The main drawback of the cluster-in-cluster methods is that the embedding operators are derived from a wavefunction 
that does not reflect the proper periodicity of the crystal: a two-dimensionally infinite wavefunction/density with a 
proper band structure would be preferable. Indeed, Rösch and co-workers pointed out recently a series of problems 
with such cluster-in-cluster embedding approaches. These include the lack of marked improvement of the results over 
finite clusters of the same size, problems with the orbital space partitioning such that charge conservation is violated, 
spurious mixing of virtual orbitals into the density matrix [170], the inherent delocalized nature of metallic orbitals 
[171], etc. 
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B3.2.4.6 EMBEDDING OF CLUSTERS IN PERIODIC BACKGROUND 
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environment [180]. They were able to successfully extend Pisani’s embedding approach to metal surfaces by smoothing 
out the step function that determines the occupation numbers near the Fermi level. Keys to the numerical success of 
their method included: (i) symmetric orthogonalization of the Bloch basis to produce a localized set of functions that 
yielded a balanced distribution of charge in the system and (ii) self-consistent evaluation of the Fermi energy by fixing 
the charge on the cluster to be neutral. The slab was described with a Slater basis at the DFT-LDA level, while the 
embedded cluster orbitals were expanded in terms of Gaussian functions at the DFT-LDA level. While some properties 
exhibited non-monotonic behaviour with increasing cluster size, the charge transfer between the metal surface and the 
adsorbate seemed to be well described. They concluded that properties are not well converged in this method if the 
cluster does not contain shells of metal atoms that are at least next-nearest-neighbours to the adsite metal atoms. 

Head and Silva used occupation numbers obtained from a periodic HF density matrix for the substrate to define 
localized orbitals in the chemisorption region, which then defines a cluster subspace on which to carry out HF 
calculations [181]. Contributions from the surroundings also only come from the bare slab, as in the Green’s matrix 
approach. Increases in computational power and improvements in minimization techniques have made it easier to 
obtain the electronic properties of adsorbates by supercell slab techniques, leading to the Green’s function methods 
becoming less popular [182]. 

Encyclopedia of Chemical Physics and Physical Chemistry 
Copyright 2001 by Institute of Physics Publishing 

  

 
-28-

Cortona embedded a DFT calculation in an orbital-free DFT background for ionic crystals [183], which necessitates 
evaluation of kinetic energy density functionals (KEDFs). Wesolowski and Warshel [184] had similar ideas to Cortona, 
except they used a frozen density background to examine a solute in solution and examined the effect of varying the 
KEDF. Stefanovich and Truong also implemented Cortona’s method with a frozen density background and applied it 
to, for example, water adsorption on NaCl(001) [185]. 

B3.2.4.7 EMBEDDING EXPLICIT CORRELATION METHODS IN A DFT BACKGROUND 

In principle, DFT calculations with an ideal exchange–correlation functional should provide consistently accurate 
energetics. The catch is, of course, that the exact exchange–correlation functional is not known. While various GGAs 
have been remarkably successful, there are notable exceptions [186, 187], including ones specific to surface adsorption 
mentioned earlier, where the binding-energy errors can be more than an eV [162, 163]. As another example, Louie and 
Cohen and co-workers found no systematic improvement over the LDA when gradient corrections were included in 
calculations of Al, Nb and Pd bulk properties, including the cohesive energy [186]. Indeed, the design of exchange–
correlation functionals constitutes an active field of research (see, for example, [188]). The lack of completely 
systematic means to improve these functionals is an unappealing aspect of these calculations. 

A first step towards a systematic improvement over DFT in a local region is the method of Aberenkov et al [189], who 
calculated a correlated wavefunction embedded in a DFT host. However, this is achieved using an analytic embedding 
potential function fitted to DFT results on an indented crystal. One must be cautious using a bare indented crystal to 
represent the surroundings, since the density at the surface of the indented crystal will have inappropriate Friedel 
oscillations inside and decay behaviour at the indented surface not present in the real crystal. 

We have developed a different first-principles embedding theory that combines DFT with explicit correlation methods. 
We sought to develop a method for treating bulk or surface phases that is more accurate than current implementations 
of DFT. The idea is to provide more accurate predictions for local energetics, such as chemisorption binding energies 
and adsorbate electronic excitation energies. To achieve this, our theory improves upon the DFT description of electron 
correlation in a local region. This is accomplished by an embedding theory that treats a small region within an accurate 
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quantum chemistry approach [190, 191], which interacts with its surroundings via an embedding potential, vembed(r). 
This vembed(r) is derived from a periodic DFT calculation on the total system. It is expressed purely in terms of orbital-
free DFT (kinetic and potential energy) interaction terms between the embedded region and its surroundings à la 
Cortona and, in particular, purely in terms of functionals of the total density, ρtot, and the density of the embedded 
region, ρI. We thus avoid construction of localized orbitals to describe the electrons in the surrounding environment. 
This is especially important for metal surfaces, where the extensive k-point sampling required to get a well converged 
density makes localization impractical (very expensive). This way of expressing the embedding operator also 
eliminates problems that occur in other forms of embedding, such as those of matching conditions at the embedding 
boundary, or spurious charge transfer, since the electrostatic potential and the density are continuous by construction. 
Its only real disadvantage is that there is an arbitrariness associated with the choice of Ts. Development of optimal Ts 
functionals is an active area of research in our group [97, 98 and 99]. 

The self-consistent embedding cycle proceeds as follows. First, a well converged density, ρtot, is calculated for the 
extended metal surface in the presence of an adsorbate. This is accomplished within a standard pseudopotential plane 
wave DFT calculation (see chapter A1.3). Second, we partition the system into the region of interest (typically the 
adsorbate and neighbouring metal atoms at or near the surface) and its surroundings (all the other atoms in the periodic 
unit cell). The embedded region is defined by the integral number of electrons and nuclei within that region but not by 
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a particular physical, fixed boundary. This allows for the electron density from the embedded region to expand or 
contract variationally into the surroundings, thus affording some effective charge polarization to occur as needed. 

The electron density, ρI, of the embedded cluster/adsorbate atoms is calculated using quantum chemistry methods (HF, 
PT, multireference SCF, or CI). The initial step in this iterative procedure sets vembed(r) to zero, since ρI is needed in 
order to calculate it. On subsequent iterations, the third step is to use ρI and ρtot to calculate vembed(r), then insert it, as 
a one-electron operator expressed in matrix form in the atomic orbital basis of the adsorbate/cluster, into the quantum 
chemistry calculation of step two, and then ρI is updated (via the wavefunction). We repeatedly update vembed(r) and 
then ρI until full self-consistency is achieved, with fixed ρtot. In this way, we variationally optimize both the quantum 
chemistry wavefunction and, implicitly, the density of the surroundings, subject to fixed ρtot. We tacitly assume that 
the DFT-slab density for the total system, ρtot, is in fact a good representation and does not need to be adjusted. 

We have shown that our embedding total energies may be written in terms of the total energy obtained in step one (the 
DFT total energy for the entire system), plus a correction term, that subtracts out the DFT energy in the local region I 
and adds back in an ab initio total energy for that same region, 

 

Thus, another way to think of the embedding is that the ab initio treatment of region I is correcting the DFT results in 
the same region, for the same self-consistent density. We expect, then, that such a treatment should reduce, for 
example, the famous LDA overbinding problem (LDA bond energies are generally significantly overestimated). We 
have indeed seen a smooth decrease in the LDA overbinding as a function of increasing electron correlation. We 
benchmarked the method against nearly exact calculations on a small system and then further corroborated it on 
experimentally well studied chemisorption systems: CO on transition metal surfaces. Our binding energies are in good 
agreement with nearly full configuration interaction in the former and experimental adsorbate binding energies in the 
latter. Very recently, we have demonstrated that excitation energies for adsorbed CO are dramatically improved 
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Computational solid-state physics and chemistry are vibrant areas of research. The all-electron methods for high-
accuracy electronic structure calculations mentioned in section B3.2.3.2 are in active development, and with PAW, an 
efficient new all-electron method has recently been introduced. Ever more powerful computers enable more detailed 
predictions on systems of increasing size. At the same time, new, more complex materials require methods that are able 
to describe their large unit cells and diverse atomic make-up. Here, the new orbital-free DFT method may lead the way. 
More powerful techniques are also necessary for the accurate treatment of surfaces and their interaction with atoms 
and, possibly complex, molecules. Combined with recent progress in embedding theory, these developments make 
possible increasingly sophisticated predictions of the quantum structural properties of solids and solid surfaces. 
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compared to experiment upon inclusion of the embedding potential [192]. In the future, we hope this method will 
provide a general means for accurate predictions of the local electronic structure of condensed matter. 

 
B3.2.5 OUTLOOK 
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