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Time-Reversible Multiple Time Scale ab Initio Molecular Dynamics 
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We have developed previously ab  initio molecular dynamics (AIMD) algorithms utilizing local molecular wave 
functions with atom-centered bases. The expense of such methods led us to explore means to employ multiple 
time step schemes to reduce costs. Herein we report our second implementation of such a scheme. In particular, 
our previous multiple time step AIMD method has been improved substantially by the implementation of the 
time-reversible reference system propagator algorithm (RESPA) of Berne and co-workers. The time-reversible 
version of RESPA treats multiple time steps rigorously without introducing the limitations inherent in our 
previous non-time-reversible AIMD RESPA implementation. We are thus simultaneously able to obtain 
substantial additional savings in computer time and to maintain high accuracy, as shown in test calculations 
on a sodium cluster. 

Introduction 

Ab initio molecular dynamics (AIMD) involves classical 
molecular dynamics of atomic nuclei to which forces derived 
from a quantum mechanical electronic wave function are applied. 
This electronic wave function then follows the motion of the nuclei. 
In our case, a Car-Parrinello type algorithm' is used to propagate 
the electronic degrees of freedom; a fictitious mass is assigned 
to the coefficients in the wave function, and they are then treated 
as classical degrees of freedom. Alternative approaches in the 
same vein include time-dependent Hartree-Fock-based methods? 
While AIMD is quite computationally intensive, it has the 
advantage that a priori knowledge of the entire potential surface 
is not required; the energy gradient is calculated only at points 
on the actual trajectory of interest. 

Since we have developed the AIMD method utilizing Har t r ee  
Fock (HF)3,4 and generalized valence bond (GVB)5*6 wave 
functions expanded in an atom-centered Gaussian basis set, the 
integrals and gradient must be completely recalculated every 
time the nuclei move. Thus, the most time-consuming portions 
of our molecular quantum mechanical-based version of AIMD 
are the calculation of the two-electron integrals over the basis 
functions, which account for approximately 20% of the total time 
required for a single time step, and the analytic energy gradient, 
which uses almost all of the remaining 80% of that time. The 
full analytic energy gradient is necessary because approximations 
such as using the Hellmann-Feynman forces are not sufficiently 
accurate; for example, in some cases, even the sign of the 
Hellmann-Feynman forces is incorrect. In the traditional Car- 
Parrinello (CP) method,' density functional theory (DFT) wave 
functions expanded in a plane wave basis set are used, which do 
not depend explicitly on the positions of the nuclei. As a result, 
recalculations of the integrals evaluated over plane waves are not 
necessary. In addition, cheaper Hellmann-Feynman forces are 
sufficiently accurate for plane wave bases. Thus, the traditional 
CP DFT method is significantly faster than our GVB AIMD 
method. However, DFT cannot treat excited states rigorously 
correctly, and it remains unclear that the DFT method is 
appropriate for nonequilibrium configurations of finite systems, 
despite recent impressive improvements utilizing gradient- 
corrected functionals.' We therefore believe pursuing molecular 
wave function-based AIMD methods is still fruitful. Given this 
objective, it is especiallycritical to find ways to reduce the amount 
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of computer time used in any AIMD calculation with an atom- 
centered basis set in order to begin to make it competitive with 
traditional DFT-based methods. This is the aim of our current 
work. 

One possible way to speed up AIMD is to take advantage of 
the multiple time scales inherent in the system being studied, 
That has been done, for example, by Micha and co-workers in 
the time-dependent Hartree-Fock formalism.8 The electronic 
degrees of freedom are known to change much more rapidly than 
the nuclear degrees of freedom; this is the basis of the Born- 
Oppenheimer approximation. If a single dynamical time step is 
used, it must be small enough that the electronic wave function 
(the fast degrees of freedom) changes by only a small amount 
each time step in order to retain accuracy while integrating the 
equations of motion. However, if the nuclei are propagated with 
the same time step, much time is wasted in recalculating forces 
on the nuclei, because those forces are changing much more slowly. 
Since most of the time used in an AIMD simulation is required 
for the calculation of the forces on the nuclei, we can save a large 
amount of computer time by calculating these forces less often. 

We originally did this in a relatively crude fashion, by simply 
calculating the forces on the nuclei every 5-10 time steps and 
either keeping the forces constant in between calculations or using 
a linear extrapolation schemeS4v6 While this is effective in reducing 
the amount of computer time expended, it is an ad hoc method 
and has no rigorous basis in theory. A rigorous separation of 
time scales (such as that provided by the RESPA integrator9) is 
preferable. The RESPA (reference system propagator algorithm) 
integrator integrates the equations of motion for a referencesystem 
that holds some degrees of freedom fixed. Those degrees of 
freedom are then propagated afterward, along with propagation 
of a correction term that accounts for the artificial separation of 
the degrees of freedom. In our case, the natural separation is to 
adopt a reference system where we hold the nuclei fixed while 
propagating the electronic degrees of freedom for a number of 
short time steps. Then the nuclei and the analytically-derived 
correction to the wave function are propagated in one long time 
step. This correction thus accounts for the fact that the nuclei 
should have been moving while the electronic wave function was 
being propagated. We have recently reported the implementation 
of the RESPA integrator in AIMD simulations.I0 Because of 
the great difference between the time scales of the nuclear and 
electronic degrees of freedom present in our AIMD simulations, 
we observed a speedup factor of about 7 in test simulations of a 
cluster of four Na atoms, with better accuracy than was obtainable 
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by simply skipping force recalculations. However, no systematic 
means of obtaining even better performance was available, because 
it turns out that the form of the analytic correction to the wave 
function is akin to an exponential growth expression, and it did 
indeed grow exponentially if the long time step was increased 
above a certain limit (approximately a 1O:l ratio between the 
long and short time steps). 

In this paper we present an alternative method that eliminates 
the previous limitations. We have chosen to implement the time- 
reversible form of the RESPA integrator" that has been recently 
developed by Berne and co-workers for Lennard-Jones particles. 
This method has proven to be superior for AIMD to the first 
RESPA integrator, because the correction to the wave function, 
which diverged in the previous nonreversible RESPA algorithm 
when the long time step became too large, is present only implicitly 
in time-reversible RESPA and does not have an equation of motion 
of its own. Therefore, exponential divergence of the correction 
should not be a problem in time-reversible RESPA AIMD. The 
next section describes the simple Verlet adaptation of time- 
reversible RESPA to GVB AIMD. In sections 3 and 4,  we present 
our initial test results and conclusions. 

Method 
The details of our AIMD implementation have been published 

previo~sly.~*~J~ The system is described by the nuclear coordinates 
{I t I ) ,  which describe the geometry of the molecule, the SCF 
coefficients {c,,i), and the GVB-CI coefficients, {m), which, in 
conjunction with the basis set, describe the electronic wave 
function. The evolution of the system is determined by the 
equations of motion+ 

(3) 

where A41 are the atomic masses, E is the total potential energy, 
S,, is the overlap matrix element between basis functions 1.1 and 
Y, hij are the associated Lagrange multipliers needed to maintain 
orthonormality between the orbitals, mSCF is the fictitious mass 
of the SCF coefficients, and mGVB is the fictitious mass of the 
GVB-CI coefficients. More detailed expressions for each of these 
terms may be found in ref 6. 

We can now integrate these equations of motion numerically 
with a long time step At for the nuclei and a short time step bt 
for the SCF coefficients, using a simple Verlet version of the 
time-reversible RESPA integrator. The idea behind the time- 
reversible RESPA scheme is fairly simple." One integrates the 
fast degrees of freedom for half of the long time interval 
appropriate for the slow degrees of freedom. Then the slow degrees 
of freedom are propagated for a full long time step, where the 
forces on the slow degrees of freedom are evaluated subject to 
the half-interval values of the fast degrees of freedom. Then the 
fast degrees of freedom are integrated to the end of the long time 
interval subject to the updated coordinates of the slow degrees 
of freedom. In this way, both the slow and fast degrees of freedom 
see average values for the complementary set of degrees of 
freedom. This averaging implicitly accounts for the correction 
term that was explicitly included in the previous RESPA 
algorithm. We expect the implicit form of the correction should 
lead to greater numerical stability. Furthermore, it is obvious 
from the structure of the algorithm that it is time-reversible. We 
now outline its implementation for AIMD. 

We first calculate the forces Fc{c(t) ,R(t))  on the SCF and 
GVB-CI coefficients c at time to. We then propagate the SCF 
and GVB-CI coefficients for n/2 short time steps 6t, where n is 
equal to At/6t ,  recomputing the force F, before each step, and 
utilizing the usual Verlet propagation algorithm: 

where t o  is the time at the beginning of the long time step. This 
brings the SCF and GVB-CI coefficients c to time to  + A t / 2  
while leaving the nuclear positions R at time to. We then compute 
the force F~{c ( t+At /2 ) ,R( to )J  on the nuclei and move the nuclei 
in one large time step At: 

R ( t + A t )  = 2 R ( t )  - R(t-At) + ,.FR(c(t+At/2),R(to)j ( A t ) 2  

( 5 )  

The nuclei have then been advanced to time to + At while the 
SCF and GVB-CI coefficients are left at time to + A t / 2 .  We 
then compute new forces F, on the SCF and GVB-CI coefficients 
and integrate them for n / 2  more short time steps bt using the 
equation 

c(t+bt) = 2 4 t )  - c(t-6t) + ( 6 t ) 2  F,(c( t ) ,R(t ,+At))  ( 6 )  
~ S C F / G V B  

at the end of which the entire system will be at time to + At, 
We emphasize again the fact that half of the short time steps 

are performed with the nuclei at time to and half are performed 
with the nuclei at time to + At. The end result of this is that the 
explicit correction found in the nonreversible version of RESPA 
disappears, because the nuclear motion is now treated directly in 
the propagation of the SCF and GVB-CI coefficients instead of 
being assumed negligible during that portion of the propagation. 
Note also that when the nuclei are moved, the force is derived 
from the wave function at time to + A t / 2 ,  and not at time to, 
giving a better (averaged) representation of the wave function 
over the entire long time step. 

Since we only need to compute the two-electron integrals over 
basis functions and the forces on the nuclei once every long time 
step At, and these operations are by far the most expensive 
operations in an AIMD simulation, we expect significant savings 
in computer time. Furthermore, since the reversible RESPA 
integrator was derived by Berne and co-workers from the Trotter 
factorization of the Liouville propagator, which has error terms 
of order t3, the same order as the error terms in the Verlet integrator 
itself, there should be no appreciable loss of accuracy due to the 
use of reversible RESPA instead of a simple, single time step 
Verlet method. This factorization also results in a rigorously 
time-reversible integrator, unlike the previous version of RESPA. 

Test Results 

We have applied this simple Verlet reversible RESPA algorithm 
to the propagation of a cluster of four sodium atoms in the ground 
(singlet) electronic state with full forces at the GVB-PP ( 2 / 4 )  
level of theory. The basis set and effective core potential are the 
same as in our previous s t ~ d i e s . ~ * ~ J ~  The initial geometry for all 
cases is a planar rectangle with sides of length 4.4 and 3.6 A, with 
slight distortion to remove symmetry. The nuclei are initially at 
rest. All trajectories are approximately 350 fs in length (2880 
small time steps bt).  

We assigned the SCF and GVB-CI coefficients fictitious masses 
of 3000 au, approximately 14 times smaller than the mass of a 
sodium nucleus. For comparison purposes, a non-RESPA control 
trajectory with a single time step of 5 au ( -0 .12 fs) was run, 
where the full forces and all two-electron integrals were computed 
each time step. The electronic wave function was reconverged 
approximately every 15 fs to ensure that the system remained 
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Figure 1. Potential energy in singlet Na4 propagation. This plot shows the behavior of the potential energy (electronic energy plus nuclear repulsion) 
as felt by the nuclei at each long time step in each of six trajectories. In each figure, the curve labeled “Control” is the non-RESPA control (-exact*) 
trajectory, and the curves labeled, for instance, 6:1, are the time-reversible RESPA trajectories with the ratio between long and short time steps indicated. 
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Figure 2. Distance between a pair of nearest neighbors in the singlet Na4 propagation. This plot shows the distance between a selected pair of Na 
atoms as a function of time in each trajectory, illustrating the similarity of the trajectories among the test cases. 

near the Born-Oppenheimer potential surface. All trajectories 
kept the short time step constant a t  5 au, while increasing the 
long time step by the appropriate factor; e.g., a time step ratio 
of 6: 1 means that the long time step is 30 au. The time-reversible 
RESPA test trajectories utilized time step ratios of 6:1, l O : l ,  
20: 1 ,  40:1, and 60: 1. The figures discussed below illustrate the 
behavior of various properties of the cluster as a function of the 
time step ratio. 

In Figure 1 we can see that the deviation in the potential energy 
asa function of time is quitesmall as the time stepratio increases; 
only in the last 100 fs do the curves begin to separate appreciably, 
and even then they remain quite close to each other (within lo4 
hartrees). The nuclear trajectories are clearly very close to the 

control (which is in turn very near the true trajectory) in all 
cases. The deviation is larger for larger time step ratios. 

Figure 2 shows the distance between two atoms throughout 
the simulations. The deviation from the control trajectory is so 
small for all test trajectories that the curves are nearly indis- 
tinguishable for the first 200 fs. The largest deviations (0.025 
A) occur near the end, although the trajectories appear to be 
coalescing at later times. 

The time evolution of the nuclear kinetic energy is plotted in 
Figure 3. Most of thedeviation from the control trajectory occurs 
in the latter half of the trajectory, where the kinetic energy is 
larger. This is no surprise; any integrator of this sort will become 
less accurate as the nuclei begin to move more rapidly. We also 
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Figure 3. Total kinetic energy of the nuclei in the singlet Na4 propagation. This plot shows how the kinetic energy of the nuclei changes with time 
in each trajectory. 

-0.73795 

- -. 
v) m z 
u 

X 
2 -0 .738 - 
h 
tn 
m 

-0.73805 
rl 
m 
u 
H 

-0 .7381  

t 
................. 

;-. I  

..-.-.-.-._.___._.- .. .;,-, ..... 
..... ,/.,' -' 

. 'I' 

-0 .73815 1 1 I I I I 

0 50 1 0 0  1 5 0  200  250  300 350 
T i m e  (fs) 

Figure 4. Total energy of the system in the singlet Na4 propagation. This plot compares the energy conservation of the test trajectories. The abrupt 
changes observed are due to nonconservation of the kinetic energy of the SCF and GVB coefficients when the wave function is reconverged (see Figures 
5 and 6). 

observe, as expected, that the deviation is larger for larger time 
step ratios. However, the deviation from the control is still less 
than 10-4 hartrees. 

Figure 4 displays the time evolution of the total energy of the 
system. One measure of the accuracy of a molecular dynamics 
simulation is conservation of energy. In the worst case, 60:1, we 
see that the energy deviation grows as large as 1.4 X 10-4 hartrees. 
The magnitude of this deviation is approximately proportional 
to the time step ratio except for an anomaly in the 60: 1 trajectory, 
which for reasons unknown has an energy deviation which is only 
slightly larger than that of the 40:l trajectory. 

Figure 5 shows the kinetic energy of the SCF coefficients versus 
time. Since this is a purely fictitious energy, we wish it to be as 
small as possible so that energy is not drained from the real portion 

of the system. Here it is only the magnitude of the kinetic energy 
of the SCF coefficients and not the deviation from the control 
that is important, because this is a purely fictitious quantity. The 
most important piece of information contained in Figure 5 is 
that, in all cases, this fictitious energy is 2 orders of magnitude 
smaller than the real kinetic energies with which we are concerned. 
If we reduce the fictitious mass to 300 au as in our original studies 
(which could not be done with normal RESPA because of the 
behavior of the correction equation but can be done with reversible 
RESPA), the observed fictitious kinetic energies will become 
even smaller. 

Figure 6 shows the kinetic energy of the GVB-CI coefficients. 
As for the kinetic energy of the SCF coefficients, we wish this 
to be small compared to the real kinetic energy in the system. We 
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Figure 5. Fictitious kinetic energy of the SCF coefficients in the singlet Na4 propagation. This plot shows the behavior of the kinetic energy of the 
SCF coefficients in each trajectory. This energy is a consequence of the treatment of the electronic wave function as classical degrees of freedom during 
propagation. 
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Figure 6. Fictitious kinetic energy of the GVB-CI coefficients in the singlet Na4 propagation. This plot shows the behavior of the kinetic energy of 
the GVB-CI coefficients in each trajectory. Again, this energy is a consequence of the treatment of the electronic wave function as classical degrees 
of freedom. 

see from this figure that the kinetic energy of the GVB-CI 
coefficients is 3-4 (depending on the trajectory in question) orders 
of magnitude smaller than the nuclear kinetic energy, exactly as 
desired. 

We have observed only small deviations from the non-RESPA 
control trajectory in various properties as a function of time. For 
example, we note that the total energy deviation observed in the 
worst (60:l) case, which peaks at about 1.4 X 10-4 hartrees, is 
-SO00 times smaller than the total energy (0.02% error). This 
minor error in energy conservation is a small price to pay for the 
time savings in computation. In particular, the speed increases 
we observed for the 6: 1,lO: 1,20: 1,40: 1, and 60: 1 time-reversible 
RESPA runs relative to the control (*exact" dynamics) run were 

factors of 5.0,7.6, 12, 18, and 21, respectively. It appears that 
at sufficiently large time step ratios the computation of the forces 
on the nuclei ceases to be the primary use of computer time, since 
we see only a small increase in speed when the time step ratio is 
increased from 40: 1 to 60: 1. 

Summary and Conclusion8 

We have presented a simple Verlet time-reversible RESPA 
algorithm for ab initio molecular dynamics (AIMD). Exploitation 
of the natural separation of time scales between nuclear and 
electronic motion and recognition that the major bottleneck in 
AIMD utilizing atom-centered bases is the calculation of the 
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forces on the nuclei has allowed us to minimize these calculations 
by using the time-reversible RESPA multiple time step integration 
scheme. Our test calculations show that a considerable increase 
in speed (up to a factor of -20) can be gained at very little cost 
in accuracy, with the total energy easily conserved to within 1W 
hartrees and the nuclear trajectory itself showing little deviation 
from “exact” Verlet dynamics. Furthermore, upon extension of 
the most poorly behaved (60:l) trajectory to 700 fs, we find that 
the total energy deviation observed is increasing in an approx- 
imately linear fashion (disregarding relatively minor oscillations) 
as a function of time. In fact, the total energy is still conserved 
towithin 0.26 mhartreeover this time period, well withinchemical 
accuracy. 

By the time one reaches a time step ratio of 60:1, we see less 
than a 20% improvement in speed over a time step ratio of 40:1, 
with similar errors incurred, suggesting that we have reached 
nearly the limit of the maximum efficiency of this algorithm. The 
time step ratio best for any particular system will depend on the 
accuracy required and the nature of the system’s potential energy 
surface and the temperature imposed. Future work will be to 
develop a dynamically changing multiple time step procedure 
that imposes the same level of accuracy in the total energy 
conservation throughout the dynamics, whileoptimizing the time 
step ratio on the fly as the system evolves on the potential surface 
and as the system is heated or cooled. 
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