The Chromium Methylidene Cation: \(\text{CrCH}_2^+ \)

Emily A. Carter and William A. Goddard III

Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125 (Received: October 26, 1983)

We have examined the electronic structure and bonding characteristics of the experimentally observed cation \(\text{CrCH}_2^+ \). We find a \(^4 \text{B}_1 \) ground state with a covalent double bond between \(^6 \text{S} \text{Cr}^+ \) and \(^3 \text{B}_1 \text{CH}_2 \). These results are in contrast to previous theoretical studies which found a lowest state with \(^4 \text{B}_1 \) symmetry and a single C–Cr bond. We calculate a direct bond energy of 44 kcal/mol and estimate the fully correlated limit to be 49 kcal/mol, which may be compared with the experimental value of 65 ± 7 kcal/mol and the previous theoretical results of 18.3 and 22.3 kcal/mol. The differences in results between the two theoretical studies on \(\text{CrCH}_2^+ \) are discussed.

Introduction

Although the bonding and thermodynamic properties of organic molecules are reasonably well understood, little reliable thermochemical information is available for organo-transition-metal complexes. Metal–carbon bond strengths are of particular interest because of the possible role of metal–alkyl, metal–alkyldiene, and metal–alkylidyne intermediates in the mechanisms of both homogeneous and heterogeneous reactions, e.g., the elucidation of the mechanisms of reductive polymerization of CO by \(\text{H}_2 \) (Fischer–Tropsch synthesis of hydrocarbons), olefin metathesis by early transition-metal alkylidene complexes, Ziegler–Natta polymerization of olefins, and many other industrially important catalytic processes.

In the past few years, advances in both theoretical and experimental characterization of metal–carbon species have been attained. GVB calculations of bond energies for several transition-metal alkylidene complexes led to bond strengths of 48–86 kcal/mol.\(^1,2\) Experimental bond dissociation energies for gas-phase, first-row transition-metal–methylenic positive ions, ranging in value from 65 ± 7 to 96 ± 5 kcal/mol, have been determined by Beauchamp and co-workers.\(^3\) Schaefer and co-workers have

\(^1\) National Science Foundation Predoctoral Fellow, 1982–85.
\(^2\) Contribution No. 6936.

TABLE I: Vibrational Frequencies (cm⁻¹) for ⁴B₁ and ⁶B₁ CrCH₂⁺

<table>
<thead>
<tr>
<th>state</th>
<th>v(Cr-C)</th>
<th>v(C-H)</th>
<th>v(CH₂) scissors</th>
</tr>
</thead>
<tbody>
<tr>
<td>⁴B₁</td>
<td>542</td>
<td>3339</td>
<td>1316</td>
</tr>
<tr>
<td>⁶B₁</td>
<td>495</td>
<td>3336</td>
<td>1336</td>
</tr>
</tbody>
</table>

a Frequencies are calculated from the harmonic force constants obtained from spline fits to (RCI*Stعلن)eme calculations.

character, as indicated in Figure 1. Thus the ground state has a Cr-C double bond with orbitals as shown in Figure 2. Each bond pair is quite covalent, involving one electron in an orbital localized on Cr and one electron in an orbital localized on C. Analyzing the orbital character in the Cr σ bond indicates that although the available σ orbital in the ground state of Cr⁺ [(3d⁵) is d₅ Cr, the Cr σ orbital of the Cr-C σ bond is 47% 4s and 53% 3d. The reason for the large amount of s character in the σ bond is analyzed below. As would be expected from these descriptions, we find C₆₅ symmetry (stable with respect to both in-plane and out-of-plane distortions) in the equilibrium geometry for the ground state.

The geometry for this state is given in Figure 1 where we see that the HCH bond angle is identical with that in ethylene (117.6°). The calculated Cr-C bond length (1.91 Å) cannot be directly compared with experiment since no chromium-alkylidene complexes have been structurally characterized. The Cr-C bond length may be compared with theoretical values for MnCH₂⁺ [R(Mn=C) = 2.01 Å] and FeCH₂⁺ [R(Fe=C) = 1.96 Å]. The Mn-C bond is substantially longer than the Cr-C bond because Mn(I) bonds to CH₂ in its (4s) (3d⁴) ground state, using the larger 4s orbital to make the σ bond and a 3d orbital to make the π bond, whereas the σ bond in CrCH₂⁺ is only 47% sp and hence is much smaller than in MnCH₂⁺. For the same reason, a Cr≡CH⁺ (s⁴d⁴ Cr) would have a much longer bond (the σ bond would involve primarily the 4s orbital on Cr) than our Cr≡CH₂⁺, whereas a CrH⁺⁺ (4d⁴ Cr⁺⁺) complex should have a much shorter bond (since the σ bond would involve a pure Cr 3d orbital).

The vibrational frequencies for both the ⁴B₁ ground state and the ⁶B₁ excited state are listed in Table 1. To our knowledge, no experimental metal–carbon double bond vibrational frequencies have been reported; however, these values (542 and 495 cm⁻¹) can be compared with calculations on CILCuH(CH₃), where the Ru-C stretching frequencies were calculated to be 746 and 798 cm⁻¹ for the two states examined. Given the much stronger bond strength in the Ru complex (91 kcal compared with the Cr system (49 kcal), coupled with similar M-C distances, leads to the prediction of a higher vibrational frequency in the Ru system, as observed. The C-H stretching frequencies (3339 and 3336 cm⁻¹) are a bit high when compared with the C-H stretch in CH₃O=CH₂ (3056 cm⁻¹). However, Schaefer has noted that theoretical X-H vibrational frequencies are generally high by 10%. The H-C-H scissors modes (1316 and 1336 cm⁻¹) is similar to the value for the same mode in ethylene (1393 cm⁻¹), as expected for an H-C-H bend of an sp³-hybridized center.

The Sextet Excited State (⁶B₁). As discussed below, the sextet ground state of Cr⁺ results from the large number of (negative) exchange interactions engendered by this high spin state (the basis of Hund’s rules). Spin pairing of the CH₂ and Cr orbitals has the effect of decreasing this exchange stabilization, and thus for sufficiently small overlap, bond pairing will not be able to overcome the spin stabilization. Thus we find a low-lying excited state consisting of a σ bond (CH₂ σ with Cr d₁σ) but no π bond. In this case the CH₂ π orbital is coupled high spin with the remaining four Cr d orbitals to yield an S = 5/2 or sextet state (⁶B₁). The geometry for the ⁶B₁ state is shown in Figure 1. The Cr-C bond length has increased from 1.91 to 2.07 Å, as expected from the

(5) Analyses of orbital character in the GVB orbitals are carried out by summing over Mulliken populations for the first and second NO’s of each GVB pair.
(6) Brusich, M. J.; Goddard III, W. A., to be submitted for publication.
repulsion induced by triplet coupling of the π electron pair. The C–H bond length and the H–C–H angle are approximately the same for both states, indicating that the hybridization of the carbon orbitals has not changed. We find C₂ᵥ symmetry for the equilibrium geometry of the 1B₁ state, again stable with respect to in-plane and out-of-plane distortions. The Cr–C bonding orbitals for the sextet state are shown in Figure 3. Again, the Cr–C σ bond is quite covalent, with one electron in a Cr d orbital and one electron in a C sp hybrid orbital. The triplet-coupled π orbitals of the sextet state look similar to the π pair in the quartet state, except that the triplet π orbitals must get orthogonal to one another, as evidenced from the node around Cr built into the carbon π orbitals.

Exchange Couplings. Before proceeding, it is appropriate to be a bit more explicit about the role of exchange interactions in Cr⁹⁺ and Cr(CH₃)₂⁺. Cr⁹⁺ has a high-spin, (3d)⁵, ⁶S ground state and a high-spin, (4s)¹(3d)⁴, ⁶D first excited state which lies 1.52 eV (35.1 kcal/mol) higher in energy.¹ The ⁶S state is lower than the ⁶D state because the magnitude of the exchange terms is larger for the high-spin d⁵ case. The ⁶S state has ten d–d exchange terms (K₆₆) between the five d electrons, whereas the ⁶D has six K₆₆ and four K₆₆ terms between the four d electrons and the s electron.

\[E_{\text{ex}}(d^5) = -10K_{6d} \]
\[E_{\text{ex}}(s^d) = -6K_{6d} - 4K_{6d} \]

The d–d exchange terms are larger than the s–d exchange terms (see Table II), leading to a larger overall exchange energy contribution in the ⁶S state.

Using the average d–d and s–d exchange terms from Table II, we can now predict the nature of the bonding in Cr(CH₃)₂⁺. Indeed, analyzing the differential loss of exchange terms (see Figure 4) expected upon bonding CH₃ to Cr⁹⁺ in either the (3d)⁵ ground state or the (4s)¹(3d)⁴ excited state allows a prediction of the fraction of 4s and 3d character in the Cr–C σ bond. Pairing the orbitals of Cr⁹⁺ and CH₃ into a simple, doubly bonded ¹B₁ state for CrCH₃⁺ leads to a loss of favorable (negative) exchange terms due to spin pairing in the bond.² If both the Cr–C bonds are to Cr d orbitals, 3.5K₆₆ are lost upon bonding (57.8 kcal/mol). If the σ bond involves the Cr 4s orbital instead of a 3d orbital, 1.5K₆₆ and 2K₆₆ are lost (27.6 kcal/mol). Thus it is intrinsically (30.2 kcal/mol) more favorable to bond methylene to one Cr σ orbital and one Cr d orbital than to two Cr d orbitals. However, the excitation energy to the (4s)¹(3d)⁴ state of Cr⁺ is 33.9 kcal/mol.¹⁰ Thus one expects an almost 50/50 mix of s and d (instead of pure d) in the σ orbital, as observed.

B₁–Bₙ State Splitting: The Importance of Correlation. The energy difference between the sextet state and the quartet state

as a function of the level of electron correlation is given in Table III. Note that Hartree–Fock prefers the \(^{4}\text{B}_1\) state by 54 kcal, whereas the basic GVB description (GVB-RCI, including the spin-coupling configurations) leads to a \(^{2}\text{B}_1\) ground state by 12.5 kcal. The highest level calculated leads to a \(^{2}\text{B}_1\) ground state by 19.0 kcal. Why is there such a stability of these spin states? In Brooks and Schaefer’s previous work on MnCH\(_3\)\(^+\), Hund’s rules were assumed valid for these systems, which would then suggest a sextet ground state for CrCH\(_2\)\(^+\). However, Hund’s rules only apply in cases of mutually orthogonal orbitals, where the exchange terms necessarily favor a high-spin ground state. For orbitals that overlap, one-electron terms generally dominate exchange terms, so that low-spin ground states are expected. Thus the \(^{2}\text{B}_1\) state is the expected ground state for CrCH\(_2\)\(^+\).

Why does Hartree–Fock theory not lead to the correct ground state? The reason is that Hartree–Fock cannot describe the doubly bonded state properly. This state involves a \(\pi\) bond with low overlap (\(S_{\text{Cr-C}} = 0.33\)), whereas in Hartree–Fock the two orbitals in the bond pair must have unit overlap. To resolve this conflict, the optimum Hartree–Fock orbitals become very ionic (\(\sigma\) electrons on the metal; \(\pi\) electrons on the CH\(_2\)) so as to be consistent with the doubly occupied orbitals. This charge separation is highly unfavorable, forcing the Hartree–Fock \(^{4}\text{B}_1\) state very high in energy. On the other hand, for the \(^{2}\text{B}_1\) state, triplet pairing of the Cr \(\pi\) and C \(\pi\) electrons forces these \(\pi\) electrons to be in separate, mutually orthogonal orbitals. To whatever the CH\(_2\) \(\pi\) and Cr \(\pi\) atomic orbitals overlap, there will be an antibonding interaction. However, for \(^{2}\text{C}--\text{CrH}_2\) this overlap is small so that Hartree–Fock predicts a high-spin ground state, with a single Cr–C \(\pi\) bond.

In the GVB wave function, we allow the two orbitals of each pair to have their optimum overlap, removing the restriction that causes Hartree–Fock to yield an ionic description of the \(\pi\) bond for the \(^{4}\text{B}_1\) state. For a purely covalent bond, the GVB wave function would have the form \(\Psi = l + r\), except that the GVB wave function allows \(l\) and \(r\) to have whatever shape minimizes the energy of the wave function:

\[
\Psi_{\text{GVB}} = \phi_{\text{GVB}} = \phi_{\text{GVB}} = \phi_{\text{GVB}}
\]

Generally the optimum wave function is about ~\(90\%\) covalent and ~\(10\%\) ionic. In the GVB wave function for a double bond, there are two possible spin couplings (VB structures) that should be optimized along with the orbitals. However, for computational convenience, we generally optimize the orbitals only for one structure (perfect pairing), leading to the GVB-PP wave function. These spin coupling terms are then included by a CI in which the two electrons in each pair are allowed to have all three possible occupations of the two orbitals for that pair. This wave function, the GVB-RCI, has nine spatial configurations for a double bond.

In addition to the GVB spin coupling, this wave function allows the interpair correlation and a high-spin coupling. The interpair correlation allows for correlated movement of electrons in one pair to one side of a bond, while electrons in another pair move to the other side of a bond, for an overall covalent structure:

\[
\text{Table IV: Cr-C Bond Energies (kcal/mol) of CrCH}_2^+.
\]

<table>
<thead>
<tr>
<th>Calculation</th>
<th>(^{4}\text{B}_1) State</th>
<th>(^{2}\text{B}_1) State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Energy</td>
<td>hartree</td>
<td>bond energy</td>
</tr>
<tr>
<td>HF</td>
<td>-1080.829 94</td>
<td>-60.9</td>
</tr>
<tr>
<td>GVB(2/4)-PP</td>
<td>-1080.915 49</td>
<td>-7.2</td>
</tr>
<tr>
<td>GVB-RCI</td>
<td>-1080.956 18</td>
<td>+18.3</td>
</tr>
<tr>
<td>RCI(_{+})</td>
<td>-1080.983 98</td>
<td>+35.8</td>
</tr>
<tr>
<td>RCI(_{+})</td>
<td>-1080.000 43</td>
<td>+28.8</td>
</tr>
<tr>
<td>RCI(_{+})</td>
<td>-1080.008 68</td>
<td>+44.0</td>
</tr>
<tr>
<td>RCI(_{+})</td>
<td>-1080.971 67</td>
<td>+20.8</td>
</tr>
<tr>
<td>RCI(_{+})</td>
<td>-1080.983 98</td>
<td>+25.0</td>
</tr>
</tbody>
</table>

The RCI wave function allows the Cr d electrons in bond pairs to gain back some of the exchange energy they have lost in bonding by including the atomic high-spin coupling. These spin-coupling effects are expected to be more important for the \(^{4}\text{B}_1\) state than for the \(^{2}\text{B}_1\) state, since more exchange terms are lost by bond pairing two Cr orbitals to CH\(_2\) to form a double bond instead of a single bond. The \(^{2}\text{B}_1\) state gains little back from atomic high-spin coupling since it already has five electrons high-spin coupled. Thus the major element that brings about the inversion of ground states is including optimal spin coupling in the GVB wave function. Allowing Cr to have both favorable exchange interactions as well as possible covalent interactions results in the doubly bonded \(^{2}\text{B}_1\) ground state for CrCH\(_2\)\(^+\).

Bond Energies. Calculating the Cr–C bond strength dissociation consistently\(^{12}\) (vide infra) leads to a direct bond energy of 44.0 kcal/mol for \(^{4}\text{B}_1\) CrCH\(_2\)\(^+\), dissociating into ground-state fragments, \(^{4}\text{Cr}^+\) and \(^{2}\text{C}--\text{H}_2\). An indication of the importance of electron correlation in transition-metal systems is exhibited in Table IV. As the level electron correlation accounted for increases, so does the bond energy, as expected when a more accurate description of the bound molecule is obtained.

All bond energies for CrCH\(_2\)\(^+\) are calculated in a "dissociation-consistent" manner. This means that we calculate a wave function at \(R_{\text{Cr-C}}\) which smoothly dissociates to the proper field limits at \(R_{\text{Cr-C}} = 0\), retaining the same description of electron correlation in the wave function for \(R = \infty\) that existed for \(R_0\). Thus our bond energies are said to be "dissociation-consistent".

Such dissociation-consistent wave functions should be expected to yield bond energies that are too small, although the bond energies will increase as the level of electron correlation is increased. In order to estimate the role of reduced correlation energy at our best level of calculation, we will compare the results of the same calculation level on a known bond energy of CH\(_2\)\(^+\), namely, in H\(_2\)C==CH\(_2\). The results for various levels of dissociation-consistent calculations on ethylene (using the same basis as for CrCH\(_2\)\(^+\)) are shown in Table V. Using the same basis set for carbon and hydrogen as was used for the CrCH\(_2\)\(^+\) calculations (vide infra) and the same level of dissociation-consistent CI leads to a direct bond energy for CH\(_2\)==CH\(_2\), \(D_1 = 175.4\) kcal/mol as compared with the experimental value of 180.0 kcal/mol. This 4.6 kcal/mol of residual correlation energy for CH\(_2\)==CH\(_2\) is expected to be a lower bound on the residual error in our calculation of the CrCH\(_2\)\(^+\) bond energy (since Cr may have additional correlation errors from the other Cr d orbitals). Thus, our best (probably conservative) estimate for the bond energy for CrCH\(_2\)\(^+\) is \(D_1 = 48.6\) kcal/mol.

Comparisons with Previous Theoretical Studies. Vincent et al.\(^6\) carried out Hartree–Fock calculations on the \(^{1}\text{B}_1\) state, leading to an optimum geometry with \(R_{\text{Cr-C}} = 2.064\) Å and \(\theta_{\text{C-C-H}} = 113.5^\circ\), whereas using correlated wave functions we find \(R_{\text{Cr-C}} = 1.971\) Å and \(\theta_{\text{C-C-H}} = 117.6^\circ\) for the \(^{4}\text{B}_1\) state and \(R_{\text{Cr-C}} = 2.07\) Å and \(\theta_{\text{C-C-H}} = 118.3^\circ\) for the \(^{2}\text{B}_1\) state. The smaller \(\theta_{\text{C-C-H}}\) in the Hartree–Fock geometry is indicative of a larger amount of

TABLE V: C–C Bond Energies for Ethylene (kcal/mol)

<table>
<thead>
<tr>
<th>calculation</th>
<th>total energy, hartree</th>
<th>no. config/SEF</th>
<th>D0 (CH\textsubscript{2}=CH\textsubscript{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VDZb</td>
<td>VDZd</td>
<td>VDZ</td>
</tr>
<tr>
<td>HF</td>
<td>-78.011 30</td>
<td>-78.040 81d</td>
<td>1/1</td>
</tr>
<tr>
<td>GVB(2/4)-PP</td>
<td>-78.051 39</td>
<td>-78.079 57e</td>
<td>4/4</td>
</tr>
<tr>
<td>GVB-RCI(4)</td>
<td>-78.066 51</td>
<td>-78.092 52d</td>
<td>5/6</td>
</tr>
<tr>
<td>GVB-RCIe S\textsubscript{valence}</td>
<td>-78.130 16d</td>
<td>167/292</td>
<td>263/460</td>
</tr>
<tr>
<td>D\textsubscript{0}f RCI\textsubscript{\sigma} + D\textsubscript{0} RCI\pi + (RCI* S\textsubscript{valence})</td>
<td>-78.101 80</td>
<td>-78.148 10e</td>
<td>367/544</td>
</tr>
<tr>
<td>expt</td>
<td></td>
<td></td>
<td>180.0f</td>
</tr>
</tbody>
</table>

a Given for CH\textsubscript{2} = CH\textsubscript{2} only. b VDZ = valence double \textit{f} basis set for C and H. Reference 18. c VDZ\textsubscript{d} = VDZ + one set of C polarization functions. d Reference 9. e This work. Reference 19. f "JANAF Thermochemical Tables", Natl. Stand. Ref. Data Sec., Natl. Bur. Stand. 1970, No. 37.

TABLE VI: Davidson’s Correction for \({ }^{4}B_1\) and \({ }^{2}B_1\) CrCH\textsubscript{2}+ states

<table>
<thead>
<tr>
<th>state</th>
<th>limit of CIa</th>
<th>no. config/SEF</th>
<th>total energy, hartree</th>
<th>quadruples contrib, kcal/mol</th>
<th>Davidson’s cor, kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>({ }^{4}B_1) doubles</td>
<td>502/2197</td>
<td>-1080.984 89</td>
<td>12.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({ }^{4}B_1) quadruples</td>
<td>1373/8829</td>
<td>-1081.008 61</td>
<td>14.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({ }^{4}B_1) unlimited</td>
<td>1415/8928</td>
<td>-1081.008 68</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({ }^{4}B_1) doubles</td>
<td>320/1699</td>
<td>-1080.977 70</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({ }^{4}B_1) quadruplesb</td>
<td>482/2146</td>
<td>-1080.978 39</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a The “unlimited” CI is our dissociation-consistent D\textsubscript{0}f RCI\textsubscript{\sigma} + D\textsubscript{0} RCI\pi + (RCI* S\textsubscript{valence}-This CI is then limited to doubles or quadruples. b “Quadruples” is the same as the unlimited CI in this orbital space.

\(1A_1\) character in the CH\textsubscript{2} part of the wave function (\(6\text{PM} = 104^\circ\)) as opposed to \(3B_1\) character (\(6\text{PM} = 139^\circ\)).

At the optimum Hartree–Fock geometry, Vincent et al. carried out a singles and doubles CI (SD-CI) calculation leading to a bond energy of 18.3 kcal/mol. Including Davidson’s correction13 for quadrupole excitations yielded a bond energy of 22.3 kcal/mol. Since Davidson’s correction is only an estimate, we decided to test the calculation of the quadrupoles correction by carrying out our best level of calculation restricted first to doubles and then to quadruples to directly calculate the correlation energy gained by including excitations up to quadrupoles. The results are shown in Table VI. Davidson’s correction was also calculated from the formula, \(\Delta E_Q = (1 - C_0^2) \Delta E_D\) (where \(C_0\) refers to the CI coefficient for the dominant configuration in the doubles and doubles CI calculation, \(\Delta E_D\) is the difference in total energies of the SCF wave function—in this case a GVB-PP wave function—of the singles and doubles CI wave function, and \(\Delta E_Q\) is the estimated difference in the total energies of the SD-CI wave function and the wave function that includes up through quadrupole excitations). By knowing \(C_0\) and \(\Delta E_D\), we have calculated \(\Delta E_Q\) for comparison with the ab initio Davidson’s correction. The results show that Davidson’s formula underestimates the amount of correlation for low-spin states and overestimates the correlation energy for high-spin states. Thus, the Vincent et al. estimate of the bond energy in \(6B_1\) CrCH\textsubscript{2}+ may be slightly high, due to an overestimate of Davidson’s correction. Perhaps a more accurate estimate of their bond energy would be 18.3 (SD-CI result) + 4 = 18.7 kcal/mol.

Vincent et al. also carried out Hartree–Fock calculations on the \(3B_1\) state; however, the \(3B_1\) state is not bound in this description. The major problem here is that the Hartree–Fock–Determination of the \(3B_1\) state is extremely high in energy (54 kcal above \(3B_1\)) with quite distorted orbitals (see Figure 5). The Hartree–Fock \(\sigma\) MO is localized primarily on the CH\textsubscript{2} ligand, while the Hartree–Fock \(\pi\) MO is localized primarily on C, with a small amount of delocalization onto the CH\textsubscript{2} ligand. Thus the Hartree–Fock description is not a covalent description where each bond has one electron localized near each nucleus. Even with HFSD-CI, the \(4B_1\) state is not bound. Thus double excitations are not sufficient both to change the shape of the orbitals and to include correlation effects. Starting with a Hartree–Fock wave function, we should include at least triple excitations and preferably quadrupole excitations in order to get a description comparable to GVB. The strength of the GVB approach is that the correlation effects are included self-consistently so that the orbital shapes are optimum for various electron correlation terms. This allows a small CI to obtain a high-quality result.

Comparison with Experiment. Experimental bond energies for metal–carbon doubly bonded species have only recently become available through the ion beam studies by Beauchamp and co-workers.2 The bond energies were determined from measuring the reaction cross section for the reaction of CH\textsubscript{2}=CH\textsubscript{2} with first-row transition-metal ions.

\(M^+ + \text{CH}_2=\text{CH}_2 \rightarrow \text{MCH}_2^+ + \text{CH}_2\)

Although these values are for isolated gas-phase ions, they have provided the only clue into a thermochemical description of solution organometallic chemistry. Beauchamp and co-workers have determined M=CH\textsubscript{2}+ bond strengths for Cr+ through Ni+ that range from 65 to 96 kcal/mol, with D(Cr=C) = 65 ± 7 kcal/mol. The weak point of the ion beam technique is lack of structural information. It is not possible to decide between two isomeric structures. Our results suggest a weaker bond energy (49 kcal) for Cr+=CH\textsubscript{2}; however, it is conceivable that another isomer could have a stronger bond.

As mentioned previously, there are no examples of structurally characterized chromium–alkylidene complexes with which to compare. Fischer has characterized chromium singlet carbene complexes with typical Cr–C bond lengths of 2.00–2.15 Å.14

\[\text{(OC)}_2 \text{Cr} \rightarrow \text{+} \text{C} \text{=C} \text{H}_2 \rightarrow \text{+} \text{OR} \rightarrow \text{R'}\]

somewhat longer than the results presented above. However, since Fischer carbene has a single dative bond from a doubly occupied σ orbital on the carbene ligand, they are expected to have longer bonds than those found for doubly bonded Cr=C systems. Most known metal–alkyliden complexes are Schrock’s Cp₃Ta(CH₂)CH₃ (Cp = η₅-C₅H₅) with a Ta–CH₃ bond length of 2.03 Å and W(O)₂(CHMe₂)₂PEt₃Cl₂ with a W–CH₂ bond length of 1.88 Å. Both systems are expected to have M=CH₂ double bonds with primarily σ character in the σ bond. As a result, the W=CH bond is shorter than our Cr=CH bond!

Summary. We find that the ground state of CrC₅H₅⁺ consists of a covalent Cr–C double bond, where the Cr–C σ bond has nearly equal parts 4s and 3d character. The hybridization and nature of the ground state has been explained in terms of differential changes in exchange terms, K₄₅ and K₅₆. The 2B₁–2B₈ energy difference as a function of correlation has been discussed. In addition, we find a direct bond energy of 44 kcal and an estimated bond energy of 48.6 kcal/mol, in fair agreement with experiment, 65 ± 7 kcal.

Calculational Details

Basis Sets. We explicitly considered all electrons for Cr, C, and H. We used a valence double 3 basis for Cr (10s8p5d/ 5s4p2d) and the Dunning–Huzinaga valence double 3 basis for carbon (9s5p3s2p) and for hydrogen (4s2s). One set of d polarization functions was added to the carbon basis, optimized for CrC₅H₅⁺. The d polarization functions were optimized for CrC₅H₅⁺. The d polarization functions were optimized for CrC₅H₅⁺.

Wave Functions. The geometry optimizations for both the 2B₁ and 2B₈ states of CrC₅H₅⁺ were carried out by utilizing a (GVB-RCI)S valence wave function (generalized valence bond restricted configuration interaction times singles from all valence orbitals). (a) For the 2B₁ state, the GVB(2/4) wave function corresponds to correlating the Cr–C σ and Cr–C π bond, each with a second natural orbital, leading to four natural orbitals in all. The C–H pairs were left uncorrelated but solved for self-consistently. The RCI allows all configurations arising from different occupations of each pair of natural orbitals for each GVB bond pair (3⁵ = 9 spatial configurations and 34 spin eigenfunctions), allowing for interpair correlation and OF coupling. Then we allow all single excitations from all valence orbitals of the nine spatial configurations of the RCI wave function to all virtual orbitals (this includes single excitations from the CH₂ pairs and the singly occupied Cr d orbitals), for a total of 507 spatial configurations and 3912 spin eigenfunctions. The single excitations allow for orbital readjustment upon stretching or bending the molecule. (b) For the 2B₈ state, the GVB(1/2) wave function corresponds to correlating the Cr–C σ bond pair with a second natural orbital, while the Cr–C π system is described by two high-spin-coupled orbitals. This is comparable to the GVB(2/4) wave function for the 2B₈ state. Both have four valence orbitals, with two Cr–C σ natural orbitals and two Cr–C π natural orbitals. The RCI allows all single and double excitations within the GVB σ pair and within the two singly occupied Cr–C π natural orbitals (the valence bond orbitals that compose the π bond in the ground state, B₁, resulting in five spatial configurations and ten spin eigenfunctions. For the GVB-RCIS wave function, we start with each of the five spatial configurations of the RCI wave function and allow all single excitations from all valence orbitals to all virtual orbitals, for a total of 327 spatial configurations and 1501 spin eigenfunctions.

To calculate the Cr–C bond energy in CrC₅H₅⁺, we used several different dissociation-consistent CI² wave functions at the equilibrium geometries of CrC₅H₅⁺ and of 2B₁, Cr₂ [2θ₁-C-H = 133°, R(C–H) = 1.078 Å]. In addition to calculating the Cr–C bond energy at the HF level, the GVB-PP (generalized valence bond with perfect pairing restriction) level, the GVB-RCl level (vide supra), and the (GVB-RCl)S valence level (vide supra), we also considered two further dissociation-consistent CI’s on the 2B₁ ground state and one further dissociation-consistent CI on the 2B₈ excited state.

(a) RCl₁D₂ + RCl₂D₄: This CI (for 2B₁, CrC₅H₅⁺ only) consists of all single and double excitations from the three RCI configurations of the Cr–C σ bond pair, simultaneous with an RCI in the Cr–C π bond pair plus the opposite—all singles and doubles from the Cr–C π bond RCI configurations, simultaneous with an RCI in the Cr–C σ bond pair. Note the excitations are from the Cr–C bond pairs to all virtuals, including excitations to Cr singly occupied d orbitals and to the other Cr VVB. This leads to a total of 1025 spatial configurations and 5810 spin eigenfunctions for the 2B₁ state (note that this includes the generic “GVB-CI” configurations). This wave function dissociates correctly to HF fragments, S C₈R and 2B₁, CH₂.

(b) RCl₁D₂ + RCl₂D₄ + (RCl)S valence: This CI wave function includes all the configurations for the wave function described directly above, but, in addition, includes the RCI’S configurations (same as described for the geometry optimization) not present in the previous wave function, leading to 1415 spatial configurations and 8928 spin eigenfunctions for the 2B₁ state and 482 spatial configurations and 2146 spin eigenfunctions for the 2B₈ state. This wave function correctly dissociates to HF*S (all single excitations from the HF wave function) fragments.

The Cr–C bond energy of ethylene was calculated at the HF, GVB(2/4)-PP, GVB-RCl(4), (GVB-RCl)S valence, and RCl₁D₂ + RCl₂D₄ + (RCl)S valence levels, as described above, using VDZ bases for C and H. The effect of d function on the Cr–C bond energy was examined by using the d function optimized for CrC₅H₅⁺. The 2B₁, CH₂ fragment was calculated at the equilibrium geometry (θ = 133°, R(C–H) = 1.078 Å) at the HF and HF*S levels.

The 2B₁–2B₈ state splittings were calculated by using all of the above methods. The 2D–2S state splittings for Cr⁺ were calculated at the Hartree–Fock level, using an averaged-field Hamiltonian to represent the four d electrons in 2D Cr⁺. The exchange integrals for 2D Cr⁺ and 2S Cr⁺ were taken from Hartree–Fock calculations.

Acknowledgment. This work was supported in part by grants from the National Science Foundation (No. DMR82-15650) and the Shell Development Company.
