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One obstacle in orbital-free density functional theory (OF-DFT) is the lack of accurate and

transferable local pseudopotentials (LPSs). In this work, we build high quality LPSs by inverting

Kohn–Sham (KS) equations on bulk valence electron densities to obtain an atom-centered local

pseudopotential. With this approach, we build LPSs for Mg, Al, and Si, and then test them in KS

DFT calculations of static bulk properties for several Mg, Al, and Si bulk structures as well as

b00-Al3Mg. Our Mg, Al, and Si LPSs produce correct ground state properties and phase orderings.

These LPSs are then tested in KS-DFT calculations of surface energies for several low-index Mg

and Al surfaces, point defect properties in hexagonal-close-packed (hcp) Mg, face-centered cubic

(fcc) Al, and diamond Si, and stacking fault energies in fcc Al. All of these LPS results agree

quantitatively with the results from nonlocal pseudopotentials with errors less than or equal to

40 meV per atom. Finally, we perform OF-DFT calculations for various Mg and Al structures,

employing the Wang–Govind–Carter (WGC) nonlocal kinetic energy density functional (KEDF).

The OF-DFT results generally agree well with the corresponding KS-DFT results. With our new

Mg and Al LPSs and the WGC KEDF, OF-DFT now provides a practical method for accurate,

large-scale first principles simulations of main group metals and their alloys.

1. Introduction

Among various first-principles quantum mechanics methods,

Kohn–Sham density functional theory (KS-DFT),1 which is

based on the Hohenberg–Kohn (HK) theorems,2 strikes a

good balance between accuracy and computational cost.

Unfortunately, the cost of KS-DFT typically scales roughly

cubically with system size, although methods that scale

linearly for nonmetals above O(100) atoms are now available.3

The situation is worse for metals, since the conventional cubic

scaling can be accompanied by a large prefactor due to the

need for dense Brillouin zone sampling. Consequently, it is

impractical at present to use KS-DFT to simulate thousands

of atoms. On the other hand, such large samples can be studied

readily with orbital-free density functional theory (OF-DFT),

which is also based on the HK theorems but requires much less

computational time, with a cost that can be made to scale

linearly with system size. OF-DFT simulations of thousands of

sodium atoms was demonstrated already a decade ago.4

Although OF-DFT is impressively efficient computa-

tionally, it is difficult to obtain the accuracy of KS-DFT

within OF-DFT. The lack of orbitals in OF-DFT renders

two terms in the total energy quite challenging to represent

accurately: the kinetic energy and the ion-electron potential

energy (by ‘‘ion’’ we mean the nucleus plus core electrons,

which are typically represented together as a pseudopotential

acting on the valence electrons). KS-DFT introduces orbitals,

which provides the means to evaluate the electron kinetic

energy in terms of the exact kinetic energy of non-interacting

electrons (the correction to this kinetic energy for interacting

electrons is subsumed into the exchange–correlation func-

tional). By contrast, OF-DFT expresses the kinetic energy

only in terms of the electron density, in a kinetic energy density

functional (KEDF). Recent advances in KEDF theory include

the development of nonlocal KEDFs that reproduce the linear

response of a uniform electron gas.5–9 For example, OF-DFT

with the Wang–Govind–Carter (WGC) KEDF8 reproduces

KS kinetic energies of simple main group metals very well.

Consequently, properties of bulk aluminum, magnesium, and

an Al–Mg alloy can be predicted by OF-DFT almost as

accurately as by KS-DFT.8,10,11 However, for other types of

materials, an accurate KEDF remains to be developed,

limiting the scope of what OF-DFT can currently be used

to study.

Besides the need for an accurate KEDF in OF-DFT,

accurate and transferable electron-ion local pseudopotentials

(LPSs) are also required to perform a meaningful OF-DFT

calculation. Unlike KS-DFT in which norm-conserving12 and

ultra-soft nonlocal pseudopotentials (NLPSs),13 and the

related nonlocal projector augmented-wave method14 have

been widely used, currently only LPSs can be used in

OF-DFT, as no KS orbitals exist in OF-DFT onto which

different angular momentum-dependent potentials can be

projected. Many schemes have been proposed for LPS con-

struction. One approach is to design an analytic form for the

LPS,15–20 for which the parameters are optimized to fit to

experimental data or some other constraints. Another strategy

is a direct numerical method. Here the valence electron density

is first generated from a KS-DFT calculation using a

NLPS21–23 or is generated by defining the valence density
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profile manually.24 A first attempt in this direction inverted the

orbital-free HK equation2 directly, employing a KEDF and

the KS-NLPS valence electron density25 to derive a LPS. A

related OF method to build a LPS for lithium involved

embedding a lithium ion into an electron gas.26

The accuracy of the latter two methods is limited by the

quality of the KEDF used. An alternative procedure is to

invert the KS-DFT equations instead of the HK equation, so

as to utilize the exact non-interacting kinetic energy operator.

A local KS effective potential is then derived that is able to

reproduce the valence electron density. Then this potential is

unscreened by subtracting off the electron–electron Coulomb

repulsion and exchange–correlation potentials to obtain the

ionic external potential. If the valence electron density is

generated from a single atom,21,24 then the ionic potential is

already the LPS for that atom. If the density is generated in a

bulk crystalline environment,22,23,25 then the bulk crystal’s

structure factor is needed to further convert the ionic external

potential into an atom-centered ionic potential, which is the

LPS of that atom.

The method presented in this paper is of the second type

described above, and is based on the previous work of Zhou

et al.22 They referred to this kind of LPS as a ‘‘bulk-derived

local pseudopotential’’ (BLPS), and demonstrated for silicon

that the Si BLPS was more transferable than the Si LPS built

from the valence electron density of a Si atom. However, Zhou

et al.’s Si BLPS still has two remaining deficiencies: (i) it gives

an incorrect energy ordering for several Si bulk structures

relative to predictions from a NLPS (the latter is presumed to

be more accurate) and (ii) it requires a large kinetic energy

cutoff to converge the planewave basis set. To address the

above two problems, we outline two improvements on the

method of Zhou et al., both of which involve how the tails of

BLPS are handled in real and reciprocal spaces. The new Si

BLPS obtained with our improved scheme is able to give the

correct energy ordering for all Si bulk structures studied in the

work of Zhou et al., and is a much ‘‘softer’’ LPS, allowing

convergence of the planewave basis set at much smaller kinetic

energy cutoffs. The same approach is also applied to build Mg

and Al BLPSs.

This paper is organized as follows. First, we outline how the

KS equations are inverted, a key step in building BLPSs. Then

we present a detailed procedure for building a BLPS, with

numerical details given afterwards. The resulting Mg, Al, and

Si BLPSs are then presented and analyzed. The performance

of our BLPSs is first compared within KS-DFT to results from

NLPSs. Last, we compare results of OF-DFT calculations

using our BLPSs and the WGCKEDF to KS-DFT for various

Mg and Al systems.

2. Inverting the KS equations

Our first task is to find a local external potential that can

reproduce a given electron density. According to the first HK

theorem,2 there exists a unique local external potential asso-

ciated with a given v-representable electron density. To obtain

this local external potential, we first invert the KS equations to

extract a local KS effective potential able to reproduce the

target electron density.

Many ways have been proposed to invert the KS equations.

One is an iterative method,27 which was used by Zhou et al. in

building Si22 and Ag23 BLPSs. Here we use a different

technique: the direct optimization method developed by Wu

and Yang.28 A brief introduction is given below.

In the Wu–Yang method, a functional W[veff(r),r0(r)] is

defined as

W[veff(r),r0(r)] = Ts[veff(r)] +
R
dr(r(r) � r0(r))veff(r) (1)

where r0(r) is the target electron density. With a trial local KS

effective potential veff(r), we solve the KS equations to get the

total kinetic energy Ts[veff(r)] and the electron density r(r).
Then we insert these Ts[veff(r)], r(r), and veff(r) back into

eqn (1) to evaluate the functional W[veff(r),r0(r)]. The optimal

veff(r) will maximize the functional W[veff(r),r0(r)], which in

turn will be the veff(r) that reproduces the target electron

density r0(r). Specifically, we expand veff(r) in a basis set

gt(r) as

veffðrÞ ¼
X
t

btgtðrÞ

The gradient of W with respect to bt is

@W

@bt
¼
R
drðrðrÞ � r0ðrÞÞgtðrÞ

We have implemented this direct optimization method in the

ABINIT code.29 In the code, veff(r) is expanded in a plane wave

basis set and the coefficients are optimized to minimize the

functional �W[veff(r),r0(r)] using a conjugate gradient optimi-

zation code.30 We note that the Fourier component of veff(r) at

q = 0, denoted as ṽeff(q = 0), can be set to any value, which

just shifts the entire veff(r) by a constant. Because the shifted

veff(r) yields the same electron density, we manually set

ṽ(q = 0) to zero during the optimization. Later, ṽeff(q = 0)

is adjusted manually, since its value affects ṽeff(q) at low but

nonzero q values due to the spline fit used.

3. Building a BLPS

The first step in building a BLPS is to generate the target bulk

electron densities used during inverting the KS equations with

the Wu–Yang method. We select the face-centered cubic (fcc),

body-centered cubic (bcc), simple cubic (sc), and diamond

(dia) structures in order to generate a wide range of bulk

electron densities. These four particular structures span a

range of coordination numbers from 12 for fcc down to

diamond’s 4, with sc and bcc exhibiting intermediate coordi-

nation numbers of 6 and 8, respectively. By generating

densities over this range of coordination, we anticipate that

our BLPSs should be able to work well in both close-packed

and more open bulk environments. The target bulk electron

densities are obtained by solving the KS-DFT equations using

NLPSs with bulk crystal structures in which both cell vectors

and ion positions have been optimized. Numerical details of

these calculations can be found in the next section.

We then invert the KS equations using these target bulk

electron densities to obtain the local KS effective potentials

veff(r) for these bulk structures using the Wu–Yang method

described above. Since we need to solve the KS equations
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again for every trial local KS effective potential in the

direct optimization method, the settings of k-point meshes,

Fermi–Dirac smearing widths, and planewave kinetic energy

cutoff values used are the same as those used in generating the

target bulk electron densities (see Table 1 and section 4).

After inverting the KS equations, we unscreen the local KS

effective potential by subtracting off the electron–electron

Coulomb repulsion and exchange–correlation potentials to

extract out the bulk ionic potential

vbulkðrÞ ¼ veffðrÞ �
dJ½r�
drðrÞ �

dExc½r�
drðrÞ

We then Fourier transform vbulk(r) to obtain the atom-

centered ionic potential vatom(q) in reciprocal space by dividing

by the structure factor S(q) of each bulk crystal

vatomðqÞ ¼ vbulkðqÞ
SðqÞ ð2Þ

where q= |q|. To avoid the singularity of vatom(q) at q= 0, we

work with the non-Coulombic part of vatom(q)

vncðqÞ ¼ vatomðqÞ þ 4pZ
q2

; ð3Þ

where Z is the pseudocharge (nuclear charge minus core

electron charge). Thus Z is 2 for Mg, 3 for Al, and 4 for Si.

4. Calculational details

Periodic KS-DFT calculations to obtain the bulk densities for

BLPS construction, static bulk properties for Mg, Al, and Si,

surface energies for Mg and Al, stacking fault energies for fcc

Al, and defect formation energies in hcp Mg and fcc Al are

performed using the ABINIT planewave DFT code.29 Periodic

OF-DFT calculations are done with the FORTRAN90-based

code, PROFESS (Princeton Orbital-Free Electronic Structure

Software), developed in our group.31 The OF-DFT code also

uses a planewave basis set. In all KS-DFT and OF-DFT

calculations, we use the local density approximation (LDA)

for electron exchange and correlation, derived from the

quantum Monte Carlo results of Ceperley and Alder32 as

parameterized by Perdew and Zunger.33

Calculations with the ABINIT code are done using

Troullier–Martins (TM) NLPSs,34 generated with the

FHI98PP code.35 We use the default core cutoff radii in the

FHI98PP code for Mg and Si. The Mg TM-NLPS has

core cutoff radii of 2.087, 2.476, 2.476, and 2.476 bohr for

s-, p-, d-, and f- channels, respectively. The Si TM-NLPS has

core cutoff radii of 1.704, 1.878 and 2.02 bohr for s-, p-, and

d- angular momentum channels, respectively, the same settings

as in the work of Zhou et al.22 For the Al TM-NLPS, we set

the core cutoff radii to be 2.1 bohr for all angular momentum

channels (the default core cutoff radii are 1.790, 1.974, 2.124,

and 2.124 bohr for s-, p-, d-, and f- angular momentum

channels, respectively). Use of the default core cutoff radii

for the Al TM-NLPS produced negligible changes in the Al

BLPS’s softness and quality, justifying our simpler choice of

2.1 bohr for all channels. For all Mg, Al, and Si TM-NLPSs,

the d-angular momentum channel is used as the local pseudo-

potential to construct the Kleinman–Bylander36 form of the

NLPSs. In all cases, the NLPSs are unscreened with LDA

exchange–correlation. In OF-DFT calculations, we use

Madden and coworkers’ LPS for Mg,25 Goodwin and

coworkers’ LPS for Al,19 Zhou and coworkers’ Si BLPS,22

and our new Mg, Al, and Si BLPSs from this work. Some

KS-DFT calculations are performed with the CASTEP code,37

with which we use its default ultrasoft NLPSs.

All numerical details are summarized in Table 1, including

planewave kinetic energy cutoffs used in both KS and

OF-DFT. For consistency, we used the highest planewave

cutoff required for convergence of any pseudopotential em-

ployed for a given system in both KS and OF calculations. We

use primitive cells throughout this work: one atom in fcc, bcc,

and sc structures; two atoms in dia, body-centered tetragonal 5

(bct5), hexagonal-close-packed (hcp), and b-tin structures;

Table 1 Numerical details in this work. Ecut and Econv refer to both KS-DFT and OF-DFT calculations. k-point meshes, Fermi surface
smearings, and Ek are only for KS-DFT. Ecut is the kinetic energy cutoff used to truncate the plane-wave basis set. Esmear is the smearing width in
the Fermi–Dirac smearing scheme. Econv and Ek are the convergence of the total energy per atom with respect to Ecut and k-point meshes,
respectively

System Ecut/eV
Econv/meV
per atom Esmear/eV k-point mesh

Ek/meV
per atom

sc, bcc, and fcc Al and Mg 800 o0.1 0.1 20 � 20 � 20 o1
Diamond and hcp Al and Mg 800 o0.1 0.1 12 � 12 � 12 o1
Al3Mg 600 o0.1 0.1 20 � 20 � 20 o1
cbcc, b-tin, hcp, and bct5 Si 1000 o0.1 0.1 12 � 12 � 12 o1
sc, bcc, and fcc Si 1000 o0.5 0.1 16 � 16 � 16 o1
Diamond and hd Si 1000 o0.5 Not used 12 � 12 � 12 o1
Vacancy formation energy in fcc Al 800 o0.1 0.1 8 � 8 � 8 o2
Vacancy migration energy in fcc Al 600 o0.1 0.1 6 � 6 � 6 o5
Vacancy formation energy in hcp Mg 800 o0.1 0.1 4 � 4 � 4 o2
Vacancy migration energy in hcp Mg 600 o0.1 0.1 4 � 4 � 4 o2
Al fcc(111) surfaces 800 o0.1 0.1 18 � 18 � 1 o1
Al fcc(100) and fcc(110) surfaces 800 o0.1 0.1 20 � 20 � 1 o1
Mg hcp(0001) surface 800 o0.1 0.1 12 � 12 � 1 o1
Mg bcc(100) and bcc(110) surfaces 800 o0.1 0.1 20 � 20 � 1 o1
Stacking fault energies in fcc Al 480 o0.1 0.1 10 � 10 � 1 o0.5
Vacancy formation and migration energy
in diamond Si using LPSs

760 o0.1 Not used 2 � 2 � 2 o1.3

Vacancy formation and migration energy
in diamond Si using ultrasoft NLPS

500 o0.3 Not used 2 � 2 � 2 o1.3
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four atoms in the hexagonal diamond (hd) structure; and eight

atoms in the complex bcc (cbcc) structure, as given in ref. 22.

We use Fermi–Dirac smearing with a width of 0.1 eV to

smooth out the Fermi surface for Mg, Al, and all metallic

phases of Si (cbcc, b-tin, bct5, sc, bcc, and fcc Si). No smearing

is used for the Si dia and hd phases, both of which are

semiconductors. All k-point meshes in the Brillouin zone are

generated using the Monkhorst–Pack method.38

In all OF-DFT calculations, the WGC KEDF8 is used with the

parameters: g = 2.7, a ¼ ð5þ
ffiffiffi
5
p
Þ=6 and b ¼ ð5�

ffiffiffi
5
p
Þ=6.

Those parameters are optimum for bulk Al.8 Previous work

demonstrated that these parameters also work well for Mg and

b00-Al3Mg.10 To render evaluation of the WGC KEDF linear

scaling, we compute it approximately by Taylor expanding the

WGC KEDF kernel around the relevant average bulk electron

density.8 In the case of Al andMg surfaces, the kernel of theWGC

KEDF is Taylor expanded around the average electron density of

bulk fcc Al or hcp Mg at their respective equilibrium volumes.

All calculations of bulk crystal properties start by obtaining

optimized structures, by relaxing cell vectors and ion positions.

Thresholds below which the stress tensor elements and forces

on ions are considered minimized are 5 � 10�7 hartree bohr�3

and 5 � 10�5 hartree bohr�1, respectively. Once the equili-

brium cell vectors are determined, the ratios between cell

vectors are kept fixed during changes in the bulk volume used

to calculate bulk moduli, equilibrium volumes, and energies.

We compress and expand the unit cell isotropically from

0.95V0 to 1.05V0, where V0 is the equilibrium volume. Then

the energy versus volume curve is fitted to Murnaghan’s

equation of state,39 which yields the bulk modulus.

Point defects in Al, Mg, and Si are set up as follows. A

vacancy in bulk fcc Al is constructed by putting eight Al fcc

cubic unit cells together in a 2 � 2 � 2 fashion to form a

supercell with 32 Al atoms. One Al atom is then removed from

one of the supercell’s four corners to create a vacancy. The

vacancy formation energy calculated with this 32-site cell is

converged to within 0.04 eV with respect to cell size.40 To

construct a vacancy in hcp Mg, 18 Mg hcp primitive cells are

put together in a 3 � 3 � 2 fashion and then one Mg atom is

removed from one of the supercell’s corners. This 35-atom

supercell yields a reasonable vacancy formation energy.41

To construct the vacancy and interstitial defects in a Si

diamond structure, we use the same supercell as in the work of

Zhou et al.:22 a cubic Si supercell with 64 lattice sites con-

structed by putting 8 cubic unit cells together in a 2 � 2 � 2

fashion. One vacancy is created by removing the atom at the

center of the supercell. The interstitial defect is created by

inserting an extra atom at the tetrahedral site. Both the

supercell and ion positions are fixed during the calcula-

tions. Due to the presence of dangling bonds, spin-polarized

KS-DFT is employed to calculate defect formation energies

using the CASTEP code.

The lattice vectors of each supercell are fixed to the equili-

brium bulk lattice vectors, but the ion positions are fully

relaxed in the presence of these vacancies. We use these same

supercells to calculate activation energies for vacancy migra-

tion between nearest neighbor sites. The initial and final states

for migration are obtained by fully relaxing the ions with the

supercell lattice vectors fixed.

The vacancy formation energy (Evf) is calculated as in

Gillan’s work42

Evf ¼ E N� 1; 1;
N� 1

N
O

� �
�N� 1

N
EðN; 0;OÞ;

and the interstitial formation energy (Eif) is calculated as

Eif ¼ E Nþ 1; 1;
Nþ 1

N
O

� �
�Nþ 1

N
EðN; 0;OÞ;

where E(n,m,O) is the total energy for the cell of volume O with

n atoms and m defects.

In KS-DFT, the vacancy migration energy is calculated

using the linear/quadratic synchronous transit method43 in

the CASTEP code, with a maximum force threshold of

0.05 eV Å�1. In OF-DFT, the vacancy migration energy is

calculated using the climbing-image nudged elastic band

(CINEB) method44,45 implemented in PROFESS code, with

a maximum force threshold of 0.01 eV Å�1.

We model the Al fcc(110), (100), and (111) surfaces with

seven, five, and five layers of Al atoms, respectively, and with

vacuum layer thicknesses of 12.6, 11.9, and 13.7 Å, respectively.

These models have been tested to give reasonable Al surface

energies.8 Mg hcp(0001), bcc(001), and bcc(110) surfaces are

modeled with nine, seven, and five layers of Mg atoms, respec-

tively, and vacuums of 12.4 Å, 14.8 Å, and 14.8 Å, respectively.

Mg and Al surface unit cells contain only one atom in the

lateral direction, with lateral lattice constants taken from the

equilibrium bulk structure but with all ions relaxed.

Surface energies are defined as

s = (Eslab � NE0)/(2A),

where Eslab is the total energy of slab, E0 is the total energy per

atom of bulk hcp Mg or fcc Al at its equilibrium volume, N is

the number of atoms in slab, and A is the lateral area of each

slab. The factor of 2 in the denominator is due to the creation

of two surfaces upon forming the slab.

The phase transition pressure in Si is calculated using the

common tangent rule

dE

dV

����
phase1

¼ dE

dV

����
phase2

¼ �Ptrans:

To calculate stacking fault energies in bulk fcc Al, we use the

same setup (Fig. 1) as in Bernstein and Tadmor’s work.46 The

layers in the illustration marked by arrows translate laterally

together. After each small translation step, we perform calcu-

lations by relaxing ion positions only in the z-direction with

lattice vectors in the x–y plane fixed to the bulk fcc Al

equilibrium values, but the lattice vector in the z-direction is

relaxed. Unit cells contain only one atom in the lateral

direction, with 20 [setup (a)] and 22 [setup (b)] atoms in the

z-direction.

We use the primitive unit cell of b00-Al3Mg, which contains

three Al atoms and one Mg atom, to model the bulk alloy. The

alloy formation energy per atom is defined as

DEf = (EAl3Mg � 3EAl �EMg)/4,

where EAl3Mg is the total energy of the primitive cell of the

b00-Al3Mg alloy at its equilibrium volume. EMg and EAl are the
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total energy per atom of hcp Mg and fcc Al at their equili-

brium volumes.

5. Results

5.1 Bulk-derived LPS

The non-Coulombic BLPS vnc(q) and the complete BLPS

vatom(q) of Mg, Al, and Si are displayed in Fig. 2. It is evident

that for each element, the data points from different bulk

structures almost constitute a common curve. This finding

confirms our basic assumption underlying this work: there

exists a common local pseudopotential suitable for describing

a wide variety of structural environments, as illustrated here

by fcc, bcc, sc, and dia structures.

With just the data points in Fig. 2, we still cannot complete

vnc(q) because we lack the data point at q = 0. As explained

above, vnc(q = 0) is undetermined at this stage. So we treat

vnc(q = 0) as a fitting parameter. With a trial value for

vnc(q = 0), we can complete vnc(q) by smoothing these data

points in Fig. 2 using the least-squares method and then

applying piecewise cubic Hermite interpolation to the

smoothed data points.47 Subsequently, we add back the

Coulombic part to vnc(q) to obtain a trial BLPS in the q-space:

vBLPS(q).

All Mg, Al, and Si data for vBLPS(q) exhibit a small

oscillating tail along the q-axis, as shown in the insets of

Fig. 2. Mg exhibits the largest amplitude oscillations. Those

oscillating tails in q-space can cause oscillating tails in real

space when we Fourier transform vBLPS(q):

vBLPSðrÞ ¼ 1

2p2

Z 1
0

vBLPSðqÞ q sinðqrÞ
r

dq:

To solve this problem, we simply multiply our vBLPS(q) with a

cutoff function f(q). We use the same cutoff function as in the

work of Goodwin et al.19

f(q) = exp(�(q/qc)6),

where we set qc to be the third zero of the vBLPS(q). We find

that increasing qc, i.e., including more of the tail in the

vBLPS(q), does not improve the quality of the BLPSs. In

practice qc is set to 6.1, 5.6, and 6.14 bohr�1 for Mg, Al, and

Si, respectively. We have also explored using a step function as

the cutoff function. The change in the BLPS quality due to

different cutoff functions is negligible, but use of the cutoff

function greatly reduces the kinetic energy cutoff required to

converge the plane wave basis.

In addition to optimizing the reciprocal space asymptotic

behavior, we also need to determine the real space Coulombic

tail of the BLPS. Zhou et al.22 enforced a Coulombic tail onto

vBLPS(r) beyond a certain point rc. They argued that the

smaller rc was, the more transferable the final vBLPS(r) should

be, as is commonly found for NLPSs. In actuality, vBLPS(r)

should have its own intrinsic Coulombic tail, but it cannot be

accurately recovered after Fourier transforming vBLPS(q)

into real space because of the dearth of data at low enough

q-vectors. A systematic means to determine the radial cutoff

beyond which we recover the intrinsic Coulombic tail in real

space is needed.

We now describe a detailed method to determine rc and

vnc(q = 0), the only two fitting parameters in our method. We

take Al as an example here; the method is the same for Mg and

Si. First we set rc to a large value; in practice rc is set to 12 bohr

for all three elements. In the second step, we fix rc and tune

vnc(q = 0) to see if we can obtain a vBLPS(r) that yields bulk

moduli and equilibrium volumes in good agreement with the

corresponding Al TM-NLPS results for all bulk structures

used in building the Al BLPS, i.e., the Al fcc, bcc, sc, and dia

structures. We also aim to reproduce with this vBLPS(r) the

energy differences between these bulk structures calculated

with the Al TM-NLPS. If we fail to find a vnc(q= 0) to make a

vBLPS(r) that satisfies the above requirements, we conclude that

the current rc is too large and we decrease rc by 0.5 bohr. With

this new rc, we repeat the second step until we find a combina-

tion of rc and vnc(q = 0) that produces a good vBLPS(r). This

vBLPS(r) is our final BLPS with a Coulombic tail starting at rc.

The rc of the final Mg, Al, and Si BLPSs (shown in Fig. 3) are

8.5, 6.5, and 10.5 bohr, respectively.

When building the BLPS, we only require that the final

BLPS reproduces bulk properties of a subset of structures that

agree well with results using the TM-NLPS. Below we test the

transferability of the BLPS in calculations of other bulk

structures, surface energies, defect energies, and the Al3Mg

alloy formation energy. None of the results from these latter

tests are used to determine rc and vnc(q = 0).

5.2 Comparing the BLPS with other PSs in KS-DFT

In this section, we will first compare KS-DFT predictions of

various bulk, defect, and interface properties of Mg, Al,

and Al3Mg using the new Mg and Al BLPSs versus using

TM-NLPSs, in order to evaluate the accuracy and transferability

Fig. 1 Illustration (after Bernstein and Tadmor46) of the atomic layer

configuration setup used to compute various stacking fault energies in

fcc Al. Setup (a) and setup (b) are used to calculate the stacking

fault energy changes from d = 0 to d = 1.0 and from d = 1.0 to

d = 2.0 in Fig. 4, respectively. ‘‘A, B, C’’ denote the atomic layers in

fcc Al.
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of these Mg and Al BLPSs. We also compare the quality of

our BLPSs to Madden and coworkers’ LPS for Mg25 and

Goodwin and coworkers’ for Al.19 The quality of our new Si

BLPS is tested afterward.

5.2.1 Static bulk properties. As shown in Table 2, static

bulk properties calculated using our Mg and Al BLPSs are in

exellent agreement with those calculated using TM-NLPSs,

except for the bulk modulus of sc Mg and the equilibrium

volume of dia Mg, where the deviation is more significant. The

TM-NLPS energy differences between any two bulk structures

are reproduced by our BLPSs with an error of o40 meV per

atom, which is within the error of other approximations made

in conventional KS-DFT. This small 40 meV per atom error

again confirms that the data points from different bulk

structures (Fig. 2) can be interpolated well with smooth curves.

The transferability of our BLPSs can be evaluated by

examining the structures not used to fit the BLPSs. For

example, the hcp structure is not used to build either the Mg

or the Al BLPS. Our BLPSs are able to accurately reproduce

the small energy difference between the hcp and fcc structures.

Like Zhou et al.,22 we believe that the origin of good transfer-

ability exhibited by our BLPSs is because they are constructed

from bulk rather than atomic densities. BLPSs are built from

bulk environments where the valence electrons are polarized

upon bonding to neighboring atoms and experience a change

in potential compared to the isolated atom. Our BLPSs

explicitly capture changes in potential necessary for good

transferability. Overall, our BLPSs for Mg and Al perform

better than Madden and coworkers’ LPS for Mg25 and

Goodwin et al.’s LPS for Al,19 at least for the properties

investigated here. This enhanced performance is not surpris-

ing, since Madden and coworkers’ LPS makes use of an

orbital-free KEDF in its construction, which is a source of

error, and Goodwin et al.’s LPS is an empirical one fitted only

to the experimental lattice parameters of fcc Al and

zincblende AlAs.

5.2.2 Surfaces and vacancies. Since our BLPSs are built

completely from data from perfect bulk crystals, calculations

of the energies of low-index Mg and Al surfaces, as well as

vacancy energetics, further challenge the transferability of the

Fig. 2 The main graphs display vnc(q) [eqn (3)], the non-Coulombic part of the final (a) Mg, (b) Al and (c) Si BLPSs in reciprocal space (solid

lines). The data points are discrete values of atom-centered local pseudopotentials generated from different bulk structures (see legends). Data

points in the insets are the complete atom-centered local pseudopotentials [eqn (2)] containing the Coulombic part. For each of the three elements,

the data points from different bulk structures almost constitute a common curve.
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BLPSs. An atom in a surface layer bonds to the atoms

underneath but has no bonds on the vacuum side. So a surface

represents a special environment intermediate between the

bulk crystal and an isolated atom. The presence of a vacancy

represents another case of undercoodination relative to a

perfect crystal. As shown in Table 3, the Al BLPS and

TM-NLPS predicted surface energies are the same to within

B20 mJ m�2, corresponding to a BLPS error of B8 meV per

atom, well within the expected error of KS-DFT-LDA. This

analysis conservatively ascribes all the error to the description

of the atoms at the surface, which is a reasonable assumption,

given that the bulk crystal is so well described by the Al BLPS.

Of course, if we assumed the error was distributed over the

non-surface atoms also, the error on a per atom basis would be

even smaller. Similarly, the Mg TM-NLPS surface energies for

three Mg surfaces are reproduced to within B10 mJ m�2 with

our Mg BLPS, corresponding to a B7 meV per atom error in

the BLPS by the same analysis.

We find similarly good agreement between the TM-NLPS

and BLPS predictions for Mg and Al vacancy energetics

(Table 4). Vacancy formation energies agree to within

B20 meV per vacancy for Mg and B4 meV per vacancy for

Al, while vacancy migration energies differ by no more than

B11 meV per vacancy for Mg and B26 meV per vacancy for

Al. All these deviations between the TM-NLPS and our BLPS

are within the expected accuracy of the numerical and physical

approximations made in KS-DFT-LDA. By contrast, Madden

and coworkers’ Mg LPS25 and Goodwin et al.’s Al LPS19 yield

significantly larger discrepancies for the same quantities.

5.2.3 Stacking fault energies in fcc Al. We further test our

Al BLPS by calculating various stacking fault energies in

fcc Al. As shown in Table 5, our Al BLPS reproduces the

TM-NLPS twinning energy very well. Other stacking fault

energies predicted by the Al BLPS are allB50 mJ m�2 smaller

than those from the TM-NLPS, as seen more clearly in Fig. 4.

Assuming the Al BLPS accurately describes the Al atoms away

from the stacking fault interface, and ascribing the entire error

ofB50 mJ m�2 to the less accurate description of the Al atoms

at the stacking fault interface, then the Al BLPS error is only

Fig. 3 (a) Mg, (b) Al and (c) Si BLPSs (solid lines) in real space. Madden and coworkers’ Mg LPS,25 Goodwin and coworkers’ Al LPS,19 Zhou

and coworkers’ Si BLPS (all in dashed lines) are shown together with our Mg, Al, and Si BLPSs, respectively. We see that our new Si BLPS is

‘‘softer’’ than Zhou and coworkers’ Si BLPS, whereas our Mg and Al BLPSs are ‘‘harder’’ than those derived empirically (Goodwin and

coworkers’19) or via OF-DFT inversion (Madden and coworkers25). The Coulombic tails of the Mg, Al, and Si BLPSs start at 8.5, 6.5, and

10.5 bohr, respectively (see insets).
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10 meV per atom, which is again within the error of other

approximations made in KS-DFT-LDA. The lowering of

B50 mJ m�2 in stacking fault energies is consistent with the

level of error already reported in Table 2, where TM-NLPS

energy differences between different Al structures are repro-

duced by the Al BLPS with an error of B40 meV per atom.

The Al BLPS appears at first glance to yield better results

for surface energies, because the surface energies are about

10 times larger than the stacking fault energies. In fact, for

both surface and stacking fault energy calculations, the

accuracy of our Mg and Al BLPSs is consistently better than

10 meV per atom. By contrast, previous LPSs yield consis-

tently lower and less accurate surface and stacking fault

energies.

5.2.4 b00-Al3Mg alloy. Thus far we have tested our Mg and

Al BLPSs for cases which contain only Mg or Al atoms. We

next test them in an alloy environment: the Al3Mg alloy in its

b00 phase. Our BLPSs do very well for this mixed system

(Table 6). The TM-NLPS results for the bulk modulus and

equilibrium volume are reproduced accurately by Mg and Al

BLPSs, a clear improvement over previous LPSs. Most

encouragingly, the small alloy formation energy calculated

with our BLPSs differs by only 0.4 meV/(unit cell) from the

Table 2 KS-DFT-LDA results for bulk moduli (B0 in GPa), bulk equilibrium volumes (V0 in Å3) and equilibrium total energies (Emin in eV per
atom) calculated using a TM-NLPS, Mg BLPS, and Madden and coworkers’ LPS25 for Mg (upper table). The lower table compares the same
quantities using a TM-NLPS, Al BLPS, and Goodwin et al.’s LPS19 for Al. The equilibrium total energies of hcp Mg and fcc Al structures are
given, while for all other structures, the energy differences between them and the ground state structures are shown. The TM-NLPS data should be
viewed as the benchmark. The new BLPSs perform better overall than previous LPSs

hcp fcc bcc sc dia

Mg

B0 TM-NLPS 38.6 37.6 37.7 24.6 12.5
BLPS 38.4 37.5 36.9 29.1 12.7
Madden LPS 36.2 35.2 34.6 24.2 11.9

V0 TM-NLPS 42.511 21.429 21.223 25.595 74.373
BLPS 42.351 21.363 21.393 24.929 71.745
Madden LPS 44.398 22.432 22.314 26.722 76.081

Emin TM-NLPS �24.515 0.014 0.030 0.400 0.822
BLPS �24.678 0.011 0.033 0.370 0.863
Madden LPS �24.400 0.014 0.019 0.351 0.737

fcc hcp bcc sc dia

Al

B0 TM-NLPS 83.5 80.4 73.8 61.9 41.5
BLPS 84.0 81.0 76.0 64.3 43.3
Goodwin LPS 68.2 66.7 62.0 54.9 39.6

V0 TM-NLPS 15.539 31.319 15.943 19.030 51.943
BLPS 15.623 31.534 16.063 18.825 51.392
Goodwin LPS 16.346 33.066 16.779 18.975 49.709

Emin TM-NLPS �57.207 0.038 0.106 0.400 0.819
BLPS �57.955 0.038 0.087 0.362 0.819
Goodwin LPS �58.339 0.029 0.071 0.250 0.599

Table 3 KS-DFT-LDA results for the surface energies (in mJ m�2) of
Mg hcp(0001), bcc(110), and bcc(001) surfaces (upper table) and fcc Al
(110), (100), and (111) surfaces (lower table). The TM-NLPS results
should be viewed as the benchmark. Our Mg and Al BLPSs yield
significantly more accurate surface energies than Madden and
coworkers’ LPS for Mg and Goodwin et al.’s LPS for Al

Mg hcp(0001) bcc(110) bcc(001)

Mg TM-NLPS 629 680 801
Mg BLPS 631 674 808
Madden LPS 597 601 730

Al fcc(111) fcc(100) fcc(110)

Al TM-NLPS 1013 1122 1207
Al BLPS 1010 1104 1212
Goodwin LPS 803 917 963

Table 4 KS-DFT-LDA results for vacancy formation (Evf, in eV)
and migration energies (Eva, in eV) in hcp Mg (upper table) and fcc Al
(lower table) calculated using Mg and Al BLPSs, as well as Madden
and coworkers’ LPS for Mg and Goodwin et al.’s LPS for Al. As
benchmarks (labeled as ‘‘NLPS’’ in the table), we use Mg and Al’s
TM-NLPSs to calculate the Evf, whereas Eva is calculated with Mg and
Al’s ultrasoft NLPSs in CASTEP.37 Our Mg and Al BLPS results
differ less than 30 meV per defect from the benchmarks

Mg Evf Eva

Experiment 0.81a 0.58b 0.79c 0.90d

NLPS 0.802 0.430
BLPS 0.822 0.419
Madden LPS 0.706 0.390

Al Evf Eva

Experiment 0.67 � 0.03e 0.61 � 0.03e

NLPS 0.780 0.664
BLPS 0.784 0.638
Goodwin LPS 0.560 0.429

a From ref. 49. b From ref. 50. c From ref. 51. d From ref. 52. e From

ref. 53.
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TM-NLPS prediction. Calculation of the alloy formation

energy is the toughest test yet, and we see that the combination

of Madden and coworkers’ Mg LPS and Goodwin et al.’s Al

LPS gives a much smaller alloy formation energy.

5.2.5 New Si BLPS. In this work, we make two key

improvements on the previous work of Zhou et al.:22 (i) a

cutoff function is used to remove the oscillating tail of the

BLPS in q-space and (ii) the BLPS’s Coulombic tail is sys-

tematically determined. The first improvement makes our

BLPSs ‘‘softer’’, i.e. a smaller kinetic energy cutoff converges

the plane wave basis set. The second improvement recovers the

intrinsic Coulombic tail of the BLPS, which helps preserve the

transferability of the BLPS. With these two refinements, we

re-build the Si BLPS with other settings kept the same as in

Zhou et al.’s work. As shown in Table 7, although Zhou

et al.’s Si BLPS produces accurate energies and volumes for

the common metallic phases (hcp, bcc and fcc), it gives

incorrect energy orderings between b-tin and bct5 Si, and

between bcc and fcc Si, compared to TM-NLPS predictions.

Our new Si BLPS predicts the correct energy ordering for all

nine Si structures considered, albeit with some loss of accuracy

for the highest energy metallic phases. Our softer Si BLPS

produces significantly improved bulk moduli but slightly

worse equilibrium volumes for all phases.

We find a mixed outcome for our new Si BLPS compared to

Zhou et al.’s BLPS when comparing phase transition pressures

and defect formation energies to those predicted by the

TM-NPLS. Table 8 reveals that our new Si BLPS performs

better for the diamond to b-tin phase transition pressure but

worse for the diamond to bct5 phase transition pressure,

compared to Zhou et al.’s Si BLPS. Table 9 shows that our

Si BLPS produces smaller defect formation energies than

Zhou et al.’s Si BLPS, but the difference between self-

interstitial and vacancy formation energies is slightly better

reproduced by this new Si BLPS.

5.3 OF-DFT tests

Given the status of current KEDFs, OF-DFT is especially

suitable for studying main group metals and their alloys,

which are nearly-free-electron-like systems. For bulk Al, Mg,

and Al3Mg, it has been shown that the KS-DFT predictions of

many key properties can be reproduced very well by OF-DFT

when the WGC KEDF is employed.10,11,40 At present, the

accuracy of OF-DFT when applied to these nearly-free-

electron-like metals is mainly hindered by the quality of

available LPSs.40,48 We now compare the performance of

OF-DFT to KS-DFT using our new Mg and Al BLPSs and

the WGC KEDF for all the Mg and Al cases studied above.

5.3.1 Static bulk properties. Various static bulk properties

predicted by KS-DFT-BLPS theory are reproduced well by

OF-DFT-BLPS theory (Table 10). It is clear that OF-DFT

works better for Mg’s and Al’s fcc and bcc structures than for

their diamond and sc structures, since the former are more

close-packed, which makes the electron density distributed

more evenly, closer to a nearly-free-electron gas. Since the

WGC KEDF is based on the latter, it makes sense that the

close-packed structures are described more accurately.

5.3.2 Surfaces, vacancies, and stacking faults. OF-DFT

with the WGC KEDF does an overall excellent job at descri-

bing defects and interfaces in Mg and Al. The errors are all

Table 5 KS-DFT-LDA results for various stacking fault energies in fcc Al (in mJ m�2) (twinning energy gt, unstable stacking fault energy gus,
intrinsic stacking fault energy gisf, unstable twinning energy gut, extrinsic stacking fault energy gesf) calculated using our Al BLPS. The benchmark
values are calculated using the Al TM-NLPS. We see that Goodwin et al.’s Al LPS gives much lower stacking fault energies

gt gus gisf gut gesf

Al TM-NLPS 57 188 140 254 149
Al BLPS 40 143 93 188 105
Goodwin LPS 24 95 68 127 79

Fig. 4 The stacking fault energy (E, in mJ m�2) as a function of the

fractional displacement d. d is the translation (shown in Fig. 1) along

the [112] direction with ten 1
10

affiffi
6
p steps (a is the lattice constant of fcc Al

at equilibrium). The curves from d = 0 to d = 1 and from d = 1 to

d = 2 are calculated with the setup (a) and (b) in Fig. 1, respectively.

The small discontinuity at d = 1.0 is due to the slight difference

between setup (a) and (b). Only twin boundaries exist at d = 0.0. The

unstable stacking fault is formed at dE 0.5, the intrinsic stacking fault

is formed at d E 1.0, the unstable twinning fault is formed at d E 1.5,

and the extrinsic stacking fault is formed at d E 2.0.

Table 6 KS-DFT-LDA results for the bulk modulus (B0 in GPa),
equilibrium volume (V0 in Å3), and the alloy formation energy (DEf in
meV) of the b00-Al3Mg alloy using Mg and Al TM-NLPSs (as the
benchmark), Mg and Al BLPSs, as well as Madden and coworkers’
Mg LPS and Goodwin et al.’s Al LPS (labeled as ‘‘M&G LPSs’’). The
TM-NLPS results for all properties, including the small alloy forma-
tion energy, are accurately reproduced by our BLPSs

B0/GPa V0/Å
3 DEf/meV per unit cell

Mg&Al TM-NLPSs 70.8 66.440 �8.2
Mg&Al BLPSs 67.5 67.131 �8.6
M&G LPSs 58.0 70.008 �2.7
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o0.1 eV per atom compared to KS-DFT with the same BLPS

and often much smaller. For example, OF-DFT predicts the

correct energy ordering for different surfaces of both Mg

and Al (Table 11). OF-DFT Al surface energies differ by

B240 mJ m�2 from the corresponding KS-DFT-BLPS quantities.

If we again assume that all the error is due to surface Al atoms,

then this 240 mJ m�2 deviation indicates an error ofB96 meV per

atom. Similarly, OF-DFT reproduces the energy for surface Mg

atoms with an error of B67 meV per atom. As before, these are

upper bounds to the per atom error. Secondly, OF-DFT repro-

duces the KS-DFT-BLPS vacancy formation energies to within

B0.1 eV for Al and B0.07 eV for Mg (Table 12). Differences

between OF-DFT and KS-DFT for vacancy migration energies

are o0.03 eV per vacancy for both Mg and Al.

The KS-DFT results (using BLPS) for unstable stacking

fault, twinning, and unstable twinning energies are well

reproduced by OF-DFT using the WGC KEDF and BLPS

(Table 13). On the other hand, the intrinsic (isf) and extrinsic

stacking fault (esf) energies from OF-DFT are smaller by

30–40 mJ m�2 than predicted by KS-DFT. To understand

the origin of the lower isf and esf energies in OF-DFT, note

that the formation of either an isf or esf in fcc Al can be

thought of as the replacement of one fcc plane by one hcp

plane. Table 10 already indicates that the KS-DFT-BLPS

energy difference between fcc and hcp Al is about 20 meV

per atom higher than from OF-DFT. As discussed above, this

20 meV per atom can lower the isf or esf energies by about

45 mJ m�2. So the smaller isf and esf energies from OF-DFT

are largely due to the fact that OF-DFT is still unable to

accurately capture the small energy difference between fcc and

hcp Al. Consequently, as shown in Fig. 4, the barriers from

d = 1 to d = 0 and from d = 2 to d = 1 are both 20 meV per

atom lower in OF-DFT than those calculated with KS-DFT.

This small change of barrier height is on the order of other

expected errors in DFT-LDA.T
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7 Table 8 Transition pressures (in GPa) calculated with KS-DFT-LDA

using the Si TM-NLPS and our new Si BLPS. Results from Zhou et al.’s
Si BLPS are also listed

dia - b-tin dia - bct5

Experiment 12.5a

Si TM-NLPS 7.4 15.6
Si BLPS (this work) 5.4 12.3
Zhou’s Si BLPS 10.2 16.6

a From ref. 54—experiment estimate.

Table 9 Self-interstitial (Es) and vacancy (Ev) formation energies in
diamond Si, calculated with spin-polarized KS-DFT-LSDA using the
default Si ultrasoft NLPS in CASTEP (as the benchmark) and our new
Si BLPS. Results from Zhou et al.’s Si BLPS22 are newly calculated in
this work. All quantities are in the units of eV/defect

Es Ev Es � Ev

Others 3.76a 3.6b

Si NLPS 3.86 3.67 0.19
Si BLPS (this work) 3.18 3.05 0.13
Zhou’s Si BLPS 3.46 3.18 0.28

a From ref. 55 spin-restricted KS-LDA, with a larger supercell and a

relaxed structure. b From ref. 56 and 57—experimental estimate.
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5.3.3 b00-Al3Mg alloy. OF-DFT performs very well for this

alloy, as shown in Table 14, independent of which set of LPSs

are used. However, our new Mg and Al BLPSs improve the

OF-DFT prediction for the alloy formation energy sub-

stantially when compared with results obtained using previous

LPSs. Moreover, Carling and Carter reported10 that this small

alloy formation energy cannot be correctly reproduced by

KEDFs with density-independent response kernels. The

WGC KEDF, which is a KEDF with a density-dependent

kernel, was the only one to produce this alloy formation

energy with the correct sign.10

6. Conclusions

In this work, we made two important improvements to Zhou

et al.’s approach to building BLPSs. We introduced a potential

cutoff in Fourier space and systematically determined the

cutoff radius beyond which BLPS’s Coulombic tail is

recovered in real space. Consequently, our new BLPSs are

more efficient to use (smaller plane-wave basis expansion

required) and more accurate in many instances. We built

Mg, Al, and Si BLPSs, and tested their transferability and

accuracy by applying them in KS-DFT calculations of static

bulk properties of several Mg, Al, and Si bulk structures,

defect energetics in hcp Mg, fcc Al, and diamond Si, surface

energies for low-index Mg and Al surfaces, and stacking

fault energies in fcc Al. Comparison of KS-DFT-BLPS

and KS-DFT-NLPS results demonstrated the excellent

Table 10 Similar to Table 2. OF-DFT-LDA static bulk properties calculated with the WGC KEDF and the BLPS. B0 is in GPa. V0 is in Å3. Emin

is in eV. KS-DFT-LDA results using the BLPS are repeated from Table 2 for ease of comparison

hcp fcc bcc sc dia

Mg

B0 OF 36.3 36.2 35.6 27.9 16.0
KS 38.4 37.5 36.9 29.1 12.7

V0 OF 43.233 21.465 21.534 25.036 69.579
KS 42.351 21.363 21.393 24.929 71.745

Emin OF �24.651 0.006 0.024 0.351 0.860
KS �24.678 0.011 0.033 0.370 0.863

fcc hcp bcc sc dia

Al

B0 OF 80.9 80.0 74.8 62.1 34.4
KS 84.0 81.0 76.0 64.3 43.3

V0 OF 15.632 31.529 15.887 19.223 53.247
KS 15.623 31.534 16.063 18.825 51.392

Emin OF �57.941 0.018 0.079 0.354 0.827
KS �57.955 0.038 0.087 0.362 0.819

Table 11 Similar to Table 3. OF-DFT-LDA surface energies (mJ m�2)
calculated with the WGC KEDF. KS-DFT-LDA results from Table 3
are quoted in parentheses for comparison

Mg hcp(0001) bcc(110) bcc(001)

OF (KS) 730 (631) 755 (674) 875 (808)

Al fcc(111) fcc(100) fcc(110)

OF (KS) 1143 (1010) 1343 (1104) 1360 (1212)

Table 12 Similar to Table 4. OF-DFT-LDA vacancy energetics (eV)
calculated with the WGC KEDF. The corresponding KS-DFT-LDA
results from Table 4 are quoted in parentheses for comparison

Mg Evf Eva

OF (KS) 0.926 (0.822) 0.396 (0.419)

Al Evf Eva

OF (KS) 0.854 (0.784) 0.629 (0.638)

Table 13 Similar to Table 5. OF-DFT-LDA stacking fault energies
(mJ m�2) for fcc Al, calculated with the WGC KEDF and the BLPS.
The corresponding KS-DFT-LDA quantities calculated with the
BLPS are shown underneath for comparison

gt gus gisf gut gesf

OF 32 139 67 171 64
KS 40 143 93 188 105

Table 14 Bulk modulus B0, unit cell’s equilibrium volume V0, equilibrium total energy E0, and alloy formation energy DEf of b00-Al3Mg are
calculated using OF-DFT-LDA with the WGCKEDF. The KS-DFT-LDA results are shown in parentheses for comparison. With our BLPSs, the
OF-DFT-LDA results for the small alloy formation energy are much improved. ‘‘M&G LPSs’’ refers to the results calculated with Madden and
coworkers’ and Goodwin et al.’s LPSs

OF-DFT B0/GPa V0/Å
3 E0/eV per unit cell DEf/meV per unit cell

Mg&Al BLPSs 66.8 67.144 �198.494 �5.6
(67.5) (67.131) (�198.575) (�8.6)

M&G LPSs 59.5 69.884 �199.367 �1.7
(58.0) (70.008) (�199.427) (�2.7)
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transferability and accuracy of our BLPSs. In these tests, the

error due to the Mg and Al BLPSs is always less than 40 meV

per atom, and in most cases is only B10 meV per atom. These

BLPSs are accurate enough in KS-DFT that, in addition to

their use in OF-DFT, they could find use in large scale

KS-DFT calculations where calculation of NLPS terms can

become prohibitively expensive.

We also tested the quality of the WGC KEDF in combina-

tion with our new BLPSs by performing OF-DFT calculations

for many of the same properties mentioned above. We demon-

strated yet again that OF-DFT performs as well as KS-DFT in

systems which are close to behaving in a free-electron-like

manner.

The method outlined here is ready for use in building BLPSs

for other elements for future use in OF-DFT. Moreover, with

our improved BLPSs and the WGC KEDF, OF-DFT is now a

practical and trustworthy tool for the large-scale simulation of

main group metals and their alloys.
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