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Abstract

We present a new local multi-reference singles and doubles configuration interaction (MRSDCI) algorithm. The
method presented here eliminates configurations if they involve simultaneous excitations out of widely separated in-
ternal orbitals and is therefore based on the weak pairs approximation of Saebg and Pulay. Although the resulting
truncated CI expansions have only about 50% as many CSFs as the non-local MRSDCI, we show that they can recover
over 99% of the correlation energy. Additionally, we show for the first time that they can accurately describe bond
dissociation. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

To obtain quantitative accuracy in a quantum
chemistry calculation one must use some post self-
consistent-field method (SCF) to treat electron
correlation. Configuration interaction (CI) is per-
haps the oldest and most well known method for
doing this [1,2]. Indeed, CI is extremely simple in
concept. Briefly, CI requires one to build a set of
n-electron configuration state functions (CSFs or
spin-adapted Slater determinants) by replacing
occupied molecular orbitals (MOs) in some SCF
reference function with virtual (unoccupied) orbi-
tals. The Hamiltonian is then diagonalized in the
resulting basis of n-electron configurations. Con-
figuration interaction can be easily used in con-
junction with multi-configuration SCF (MCSCF)
wavefunctions to incorporate electron correlation
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into wavefunctions which properly describe the
cleavage of chemical bonds. This makes the CI
method quite general and applicable to a wide
range of systems and phenomena.

With the introduction of direct-CI [3] and
graphical methods, [4-6] it has become possible to
routinely carry out large-scale CI calculations with
a few million CSFs on small molecules, resulting in
very accurate electronic energies. For the case of
ClI restricted to single and double excitations from
the reference (SDCI), Siegbahn [7] made a partic-
ularly important contribution in describing how to
treat the electrons occupying the virtual orbitals in
a very efficient manner. Unfortunately, in terms of
disk storage, memory, and CPU time, CI still
scales very poorly with the size of the system,
making the treatment of larger systems difficult if
not impossible. The main disk storage requirement
for a CI calculation is storage of all the electron
repulsion integrals (ERIs), which scales as N*,
where N is the number of basis functions. The
memory and CPU requirements, on the other
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hand, are far more severe and are the factors which
truly limit the size of a CI calculation that one may
do. For optimum efficiency, one would like to re-
tain two copies of the vector of CI expansion co-
efficients (the CI vector) in high-speed memory [8].
This is in fact a rather demanding requirement and
will quickly overwhelm typical machines. By se-
quentially reading in blocks of the CI vector, one
can partially overcome this requirement. However,
the problem of the CPU time requirement still
remains. For the most common type of CI calcu-
lation, SDCI, the CPU time scales as N°. For CI
including all possible excitations out of the refer-
ence (full CI), the method scales as N!. Thus, the
treatment of large systems using the CI method
necessitates the development of specialized CI al-
gorithms which are less resource intensive than
standard CI. In particular, CPU time and memory
consumption must be reduced.

A great deal of research has been devoted to
developing CI methods which scale better with the
system size but still retain a high level of accuracy.
Saebe and Pulay (SP) used orbital localization to
truncate the number of CSFs used in the CI ex-
pansion [9], reducing both the memory and CPU
requirements. Martinez et al. later applied the
pseudospectral approximation [10,11] for com-
puting ERIs to full CI [12], doubles CI [13] and
multi-reference SDCI (MRSDCI) [14]. Through
the direct use of intermediate pseudospectral ERI
quantities in the CI equations, these methods re-
duced the CPU time required for a CI calculation.
However, they offered no relief for the memory
requirements. Reynolds et al. [15,16] later incor-
porated localization into the pseudospectral CI
methods, yielding a method which addressed both
the CPU time and memory requirements. How-
ever, with the exception of the study of Martinez et
al. on pseudospectral MRSDCI, none of the re-
duced scaling CI methods were developed for
multi-reference wavefunctions. This is a rather
serious limitation as it precludes the use of these
techniques for describing bond dissociation, per-
haps the most important phenomenon in chemis-
try.

Here, we present a new multi-reference local
SDCI program. Unlike previous implementations
of local ClI, it is not restricted to excitations out of

a single reference and can therefore be used to
study bond breaking. Furthermore, the new local
CI presented here is based upon the symmetric
group graphical approach (SGGA) CI of Duch
and Karkowski [17,18]. In this formalism, the
spatial part of the wavefunction is separated from
the spin part of the wavefunction. This has a
number of advantages for doing local CI, where
the CSFs are selected solely on the basis of the
spatial features of the MOs. The most important
of these advantages is the rapid on-the-fly calcu-
lation of integral coupling coefficients for all the
different spin couplings associated with a given
pair of spatial configurations. This allows one to
quickly and efficiently reorganize a CI calculation
to accommodate the elimination of configurations
associated with local CI. This will be discussed in
more detail below. In addition, single point ener-
gies and potential energy surfaces calculated using
our new multi-reference local CI method will be
discussed. It will be shown that our new CI
method accurately describes bond dissociation
using significantly fewer resources than standard
MRSDCI.

2. Theory
2.1. Local configuration interaction

Because the Coulomb potential between elec-
tron pairs is short ranged, the motion of widely
separated electrons is only very weakly correlated.
This fact can be used to greatly reduce the effort
required in methods used to describe electron
correlation. One way of doing this is the weak
pairs approximation, first introduced by SP [19].
The weak pairs approximation in the CI method
neglects or approximates the contributions of
CSFs having simultaneous single excitations out of
widely separated MOs, as the electrons occupying
these MOs are weakly correlated. Of course, in
order to meaningfully discuss the notion of widely
separated orbitals, the occupied MOs should be
localized. In this study and the work of SP, this is
done using the Boys method [20].

In previous implementations of weak pairs CI
by SP [19] and Reynolds et al. [15], the weak pairs
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were determined by calculating the distance be-
tween the centroids of pairs of localized molecular
orbitals. In the weak pairs CI of Reynolds et al., if
this distance was beyond a specified cut-off radius,
the pair was characterized as making a negligible
contribution to the correlation energy. CSFs hav-
ing simultaneous excitations out of these orbitals
were then eliminated from the CI expansion while
simultaneous excitations out of all other pairs of
orbitals were allowed. In the weak pairs CI of SP,
on the other hand, pairs of orbitals were divided
into three classes. Like Reynolds et al., there were
categories for totally negligible pairs and strongly
correlated pairs. However, there was also a class
for pairs of MOs separated by an intermediate
distance. The contributions from excitations out of
these pairs of MOs were treated approximately
using second-order perturbation theory.

Here, we take a different approach to deter-
mining the weak pairs. A Mulliken analysis is first
done on each localized internal orbital to deter-
mine the atoms upon which the orbital most
heavily resides. The atoms are then sorted from
greatest to least according to this criteria. Next, a
group of atoms is selected from the top of this list
such that the sum of their contributions to the
total charge exceeds some threshold. Generally,
the orbitals are normalized to unity so this
threshold is a number like 0.75, for example. The
maximum distance between any two atoms in this
group, rmax, 18 then calculated, as is a charge
weighted average position, 7., for the atoms in the
group. Finally, a sphere of radius oy, centered at
r. 1s associated with the orbital. Here, o is an ad-
justable parameter on the order of 1.0 chosen to
adjust the radius slightly from r,,,. Weak-pairs are
then defined as pairs of orbitals whose spheres do
not overlap. Compared to the previously used
method of determining weak pairs, this method
has the advantage of more accurately taking into
account the spatial extent of the individual orbi-
tals. Additionally, the scheme can be seamlessly
applied to virtual orbitals for use in a CI algorithm
where the virtual orbital space is truncated. This
possibility will be explored in future research.

A special case arises for orbitals localized en-
tirely on one atom, such as core orbitals. For these
orbitals, a default sphere radius should be chosen.

It should be noted, however, that the CI energies
are insensitive to this default radius and it can be
taken to have a fairly small value. This is simply a
reflection of the fact that core electrons are held
close to the nucleus and their motion is strongly
correlated only with other electrons localized on
the same atom.

2.2. SGGA approach

Large-scale CI is carried out using direct
methods [3] in which the full Hamiltonian is never
constructed. Rather, the Hamiltonian is diago-
nalized using procedures which only require one to
multiply the Hamiltonian by a trial vector [21]. To
do this, matrix elements or partial matrix elements
of the Hamiltonian are constructed using the ex-
pression

Mo = Y4y (ilhl7) + Y A kD), (1)
ij ijkl

where i, j, k, [ are orbitals, u and v are CSFs, and
the 4j; and 47, are known as integral coupling
coefficients. In general, there are two styles of large
scale CI available today. The first relies on Slater
determinants as the CSFs [22]. The principal ad-
vantage of these methods is that integral coupling
coefficients can be computed very inexpensively in
terms of both computational and mathematical
effort. This, of course, makes CI algorithms based
on Slater determinants very rapid and relatively
easy to implement. However, except in the case of
closed shell singlets and open shells coupled to
maximum spin, Slater determinants are not native
spin eigenfunctions. Because of the poor scaling of
the CI method, CI algorithms intended for large
systems should include as few CSFs as possible.
Thus, it is advantageous to use only spin-adapted
CSFs in such a CI method, ruling out the use of
Slater determinants.

Spin adapted many-electron wavefunctions
were first formulated in terms of the symmetric
group [23-25]. However, large-scale CI methods
based on spin-adapted CSFs were first imple-
mented in terms of the unitary group approach
(UGA) [26] and its graphical form (GUGA) [4-6].
In this approach, the spin and spatial parts of
the wavefunction are intertwined. Consequently,
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integral coupling coefficients are calculated sepa-
rately for all the different spin couplings associated
with a given configuration. Furthermore, the
procedure for doing this is rather complicated and
does not lend itself well to on-the-fly computation.
Thus, coupling coefficients are calculated once
beforehand and stored on disk in a sequential
access file. There are several disadvantages to this
arrangement. First, it introduces a strong depen-
dence on low speed disk storage. Second, one must
carry out the CI in a fashion dictated by the se-
quence of coupling coefficients on the file, gener-
ally forcing one to sort the coupling coefficient file
to carry out a specialized CI calculation. In order
to carry out a truncated CI calculation, one must
first prune the coupling coefficient file. Finally, the
GUGA-style programs available for generating
coupling coefficients are typically quite limited in
the number of internal orbitals they can handle,
making them inappropriate for use in the devel-
opment of CI programs designed to treat larger
systems. It should be noted that the pseudospectral
CI method of Martinez et al. [12-14] and the local
pseudospectral CI method of Reynolds et al.
[15,16] were implemented in terms of the GUGA
formalism and therefore suffered from the diffi-
culties described above.

Subsequent to the development of GUGA-style
CI programs, large-scale CI algorithms based on
the symmetric group began to appear [17,18]. In
addition to offering a formalism which is much
simpler compared to the UGA, the symmetric
group approach (SGA) offers special advantages
for local CI. The key feature of the SGA is the
separation of the spin and spatial parts of the
wavefunction. As described above, in local CI
CSFs are eliminated only according to the spatial
aspects of the MOs. In the SGA, this elimination
can be done en masse for all the spin couplings
associated with a given orbital configuration. In
the UGA, this is not possible because the spin and
spatial parts of the wavefunction are entangled.
For the configurations not eliminated from the CI,
all coupling coeflicients for all spin functions as-
sociated with an orbital occupation are computed
simultaneously in the SGA. These coupling coef-
ficients take the form of symmetric group repre-
sentation matrices, and extremely efficient

algorithms for computing these matrices have been
developed by Duch [27,28]. In fact, the efficiency
of the algorithms is such that coupling coefficients
can be recalculated as they are needed. Thus, one
no longer needs to rely on a coupling coefficient
file which is stored on disk, eliminating the need to
sort such a file and allowing one to organize the CI
calculation in any way one desires. Clearly, the
SGA offers both a more efficient and more eclegant
means of carrying out local CI.

For the purpose of carrying out CI calculations
on large molecules, the SGA offers an additional
advantage. Coupling coeflicient codes based on the
UGA are generally limited in the number of orb-
itals they can handle. In the SGA, however, the
limiting factor is ultimately the maximum number
of open shells. For SDCI, this maximum is four
greater than the largest number of open shells in
any of the references. This is a quantity which
depends on the spin multiplicity and the choice of
reference wavefunction, not the size of the mole-
cule. Furthermore, for the overwhelming majority
of CI calculations imaginable, this is a quantity
which is easily handled by the available algorithms
for computing the symmetric group representation
matrices.

3. Calculational details

We have developed a new FoRTRAN 90
MRSDCI program based on the SGGA—CI algo-
rithms of Duch and Karwowski [17,18]. Integral
coupling coefficients are calculated as they are
needed during the diagonalization process using
the algorithms of Duch [27,28]. To minimize the
memory requirement, dynamic memory allocation
is used throughout the program. Following the
recommendation of Siegbahn [7], our code takes
advantage of the very simple structure of the ex-
ternal space. However, the treatment of the ex-
ternal space has not yet been vectorized in a
manner described by Saunders and van Lenthe
[29]. We expect a substantial enhancement in the
efficiency of our program once this is done. In
most cases, some of the highest energy orbitals
were eliminated from the virtual space to keep the
total number of CSFs down to a few million.
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The Hamiltonian matrix was diagonalized using
the Davidson method [8]. A starting guess for this
diagonalization procedure was obtained by diag-
onalizing a small Hamiltonian formed in the basis
of all CSFs containing only internal orbitals.

The SCF reference wavefunctions and opti-
mized geometries were computed either with the
Honpo [30] or JAGUAR [31] quantum chemistry
packages. Molecular integrals in the MO basis
were computed using Honpo. All calculations
were done on a Compaq DEC ES40 machine.

4. Results and discussion
4.1. Calibration of the method

As described in Section 2.1, our local CI scheme
depends on three parameters. First, there is a
charge threshold used to determine the group of
atoms upon which the localized internal orbitals
most heavily reside. Second, there is a parameter o
which serves to scale the radii of the spheres as-
sociated with each orbital. Finally, there is a de-
fault sphere radius for orbitals localized entirely on
one atom. To determine how these parameters
effect the CI energies, we carried out a series of
calibration calculations on the trans-4-octene
molecule. Because this molecule is fairly long
compared to a typical bond length, we expect the
local CI approximation to perform very well and
lead to substantial savings in CPU time. For these
studies, a Hartree-Fock (HF) reference and the
DZP basis of Dunning [32] were used. The 68
lowest energy virtual orbitals were used as corre-
lating orbitals, leading to 2370753 CSFs for non-
local SDCI. Table 1 shows the variation in the
percentage of correlation energy recovered as the
charge threshold is varied in local SDCI. For a
charge threshold of 0.30, the local CI expansion
contains roughly one-third the number of CSFs as
the non-local CI, yet it still recovers a respectable
96.45% of the correlation energy. Increasing the
threshold to 1.00 yields a CI expansion having
slightly more than half the number of CSFs of the
non-local CI, and almost 99% of the correlation
energy is recovered. It should be noted that as the
threshold is increased to 1.00 the number of CSFs

Table 1
Percentage of correlation energy recovered as a function of
charge threshold

Threshold No. of Time per Correlation
CSFs iteration energy
(s) (%0)
0.30 789345 2800 96.45
0.60 928065 3000 98.88
0.85 978929 3100 98.88
1.00 1464449 4200 98.89

The default radius is 2.0 bohr and « is 1.0.

does not approach the number of CSFs used in
non-local CI. This is a consequence of the fact that
the Boys localized orbitals are often localized en-
tirely on only a few atoms.

Table 2 shows the variation in the percentage of
the correlation energy recovered as a function of
the radius multiplier . Unlike the charge thresh-
old, the correlation energy recovered smoothly
approaches 100% as « is increased. For an o of 1.3
there are roughly half as many CSFs as the non-
local CI, and 99.57% of the correlation energy is
recovered. When a similar number of CSFs were
used in the CI expansion by increasing the charge
threshold (Table 1), the percentage of correlation
energy recovered was less than 99%. Thus, sys-
tematically increasing « is a more efficient method
of adjusting the number of CSFs to maximize the
amount of correlation energy recovered. This re-
sult is hardly surprising. For an orbital localized
mainly on a few atoms but having a small amount
of charge on a handful of stray atoms, increasing

Table 2
Percentage of correlation energy recovered as a function of
radius multiplier o

o No. of Time per Correlation
CSFs iteration energy
(s) (%0)
0.30 789345 2800 96.45
0.80 826337 3000 97.70
1.00 978929 3100 98.88
1.30 1219377 3800 99.57
1.60 1404337 4100 99.85
2.00 1677153 4800 99.95
2.50 1899105 5700 99.99
3.00 2042449 6100 99.99

The default radius is 2.0 bohr and charge threshold was 0.8.
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the charge threshold to 1.00 will cause these stray
atoms to be included in the sphere associated with
such an orbital. This will lead to the inclusion of
CSFs having simultaneous excitations out of the
orbital in question and orbitals localized near the
stray atoms. Clearly, these CSFs will not make a
substantial contribution to the correlation energy.
On the other hand, increasing o simply extends the
radius of the sphere surrounding the atoms upon
which the orbital is localized. The additional CSFs
included in the CI expansion by doing this will
clearly make a greater contribution to the corre-
lation energy than the additional CSFs included by
increasing the charge threshold.

Studies to determine the effect of the default
radius on the percentage of the correlation energy
recovered were also carried out. We find that in-
creasing the default radius from 0.05 to 4.00 bohr
lead to the recovery of only an additional 0.03% of
the correlation energy in trans-4-octene. This re-
sult can be explained by noting that the default
radius is used to define a radius for spheres asso-
ciated with orbitals localized entirely on just one

atom. Generally, these are core orbitals. As the
core electrons are held very close to the nucleus,
the motion of these electrons is strongly correlated
only with other electrons localized on the same
atom. So long as the default radius is not zero,
CSFs having simultaneous excitations out of core
orbitals and orbitals localized on the same atom
will be included in the CI expansion. The strong
localization of the core orbitals makes this suffi-
cient to describe the correlation of the core elec-
trons.

4.2. Scaling of the method with the size of the
system

Fig. 1 shows the CPU times per iteration for
both non-local and local CI calculations on a se-
ries of saturated alkanes ranging from methane to
dodecane. All calculations were done using a HF
reference and a 6-31G basis set [33]. For the local
CI calculations o was 1.3 and the charge threshold
was 0.8. This choice of parameters lead to recovery
of more than 99.6% of the non-local CI correlation
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Fig. 1. CPU times per iteration for CI calculations on saturated alkanes. Solid line with circles, conventional non-local CI; dashed line

with squares, weak pairs SDCI.
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energy in all cases. For 1-4 carbon atoms the local
CI method leads to very little reduction in com-
putational effort. In the case of butane, for ex-
ample, the computational effort was reduced by
only 23%. As the size of the alkane increases be-
yond butane, the savings from the weak pairs ap-
proximation become more substantial. For octane
and dodecane, the local CI calculations take only
50% and 40% as long as the non-local CI calcu-
lations, respectively. The decrease in computa-
tional effort with increasing molecular size can be
easily understood in terms of the increasing num-
ber of weak pairs in larger molecules. From butane
to dodecane this number increases from 36 to 791.

In almost all cases, the virtual orbital space is
much larger than the occupied orbital space.
However, since in SDCI only two electrons may
occupy the virtual space, the treatment of the
virtuals may be simplified dramatically [7]. Al-
though this leads to considerable savings in the
time required to treat the virtuals, the large size of
the virtual space still demands the overwhelming
majority of the computational effort in a CI cal-
culation. In the weak pairs approximation, simul-
taneous excitations to all virtuals out of widely
separated occupied orbitals are neglected. The
savings are therefore derived from reducing the
number of times the virtual orbital space must be
treated. Although the code presented here takes
advantage of the relatively simple structure of the
virtual space, the treatment has not been opti-
mized according to the prescriptions of Duch [17]
and Saunders and van Lenthe [29]. Once this is
done, it is expected that the overall CPU times will
be reduced further. However, the savings of the
weak pairs CI relative to non-local CI should be
unaffected since the weak pairs approximation
simply changes the number of times the virtuals
must be treated. Similarly, the savings of the local
CI relative to non-local CI will not depend on the
size of the basis set as this will only increase the
total number of virtuals.

4.3. Dissociation of trans-butene
Unlike previous implementations of weak pairs

CI [9,15,16], our code is not limited to the use of a
single closed shell reference. This opens up the

possibility of using our weak pairs CI method to
study bond breaking. Here, we use our method to
examine the cleavage of the C—C double bond in
trans-2-butene. A GVB-RCI wavefunction was
used as the reference [34,35]; both electron pairs of
the C-C double bond were correlated as GVB
pairs. This reference wavefunction, which contains
nine spatial configurations, provides a qualita-
tively proper description of the bond dissociation.
The 6-31G™ basis set of Pople was used [33], and
the 42 lowest energy virtual orbitals were used as
correlating orbitals. This resulted in 4193202 CSFs
for non-local CI. Since the trans-2-butene molecule
is relatively small, we do not expect the weak pairs
approximation to lead to a huge savings in com-
putational effort. However, the point of this set of
calculations is not to achieve the maximum re-
duction in computational effort. Rather, it is to
show that the weak pairs CI method can give re-
sults comparable to non-local CI.

The potential energy surface (PES) for cleavage
of the trans-2-butene double bond computed at
various levels of theory is shown in Fig. 2. At the
GVB-RCI level, the D, is determined to be 153.0
kcal/mol. Augmenting the GVB-RCI wavefunc-
tion with non-local SDCI leads to a D, of 165.1
kcal/mol. In both cases, the PESs describe smooth
dissociation into fragments. When the PES is
computed using local CI with an « of 1.0 and a
charge threshold of 0.8, the D, is determined to be
164.2 kcal/mol. Compared to the non-local CI, this
is an error of less than 1 kcal/mol. At the equi-
librium bond length 99.4% of the correlation en-
ergy is recovered and at a bond length of 13.0 bohr
99.7% of the correlation energy is recovered. At all
other points, more than 99% of the correlation
energy is recovered. Consequently, this local CI
surface is almost superimposable upon the non-
local CI surface. It should be pointed out that this
local CI only reduces the computational effort
compared to the non-local CI by roughly 35%.
However, the parameters for the non-local CI were
chosen to be similar to parameters that one would
likely use in calculations on larger molecules. The
results shown here indicate that these parameters
would likely lead to results comparable to the re-
sults obtained from non-local CI calculations
(with no CI vector truncation).
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When the PES is computed using local CI with
an o of 0.6 and a charge threshold of 0.75, the D, is
determined to be 160.3 kcal/mol. Although thisis a
marked improvement over the GVB-RCI D,, an
error of 4.7 kcal/mol relative to the non-local CI is
introduced. The local CI parameters chosen for
these calculations correspond to a relatively severe
truncation of the CI expansion. As a result, the
fraction of the correlation energy recovered is re-
duced compared to the case described above. At
the equilibrium geometry, for example, only 93.6%
of the correlation energy is recovered. Neverthe-
less, the PES computed at this level of theory is
quite smooth, and the error in the D, is moderate.
Thus, the multi-reference local CI method appears
to be fairly robust.

5. Conclusions

Here, we have presented a new multi-reference
weak pairs local SDCI program. It was shown that
for large molecules the weak pairs CI method
could recover over 99% of the correlation energy
with only 40% of the computational effort. For the

first time, we have used the local CI method with a
multi-reference wavefunction to study bond
cleavage. In the case of the trans-2-butene double
bond it was shown that the local CI method yiel-
ded a D, which was within 1 kcal/mol of the non-
local CI D.. Furthermore, the local CI PES for
cleavage of this bond is almost indistinguishable
from the non-local CI PES and is just as smooth.
When a severe truncation in the CI vector is made,
the error in the D, grows, but the PES retains a
high degree of smoothness. We note that our local
CI program is built upon the SGGA, in which the
spin part of the wavefunction is separated from the
spatial part of the wavefunction. This offers a
much more elegant formalism for carrying out
local CI and is also better suited to the treatment
of large systems. The overall speed of the current
method can be improved greatly by vectorizing the
treatment of the virtual space, which is a subject of
our ongoing work. Once this is done, the program
will be particularly well suited to a pseudospectral
implementation. Additionally, we plan to explore
the use of local correlation methods for treating
the virtual space in multi-reference CI. Similar to
the current work, it is expected that the SGGA will
provide a solid foundation for achieving this.
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